Observations and scaling of the atmospheric boundary layer

G.D. Hess
Bureau of Meteorology Research Centre, Australia
(Manuscript received April 1992; revised July 1992)

One of the areas of research that Reg Clarke took a particular interest in was the atmospheric boundary layer (ABL). In this review we examine observations of the structure of the ABL based on a framework of similarity scaling. This includes: the Monin--Obukhov surface layer; the free-convection layer; the near-neutral upper layer; the mixed layer; the stable layer scaled by local fluxes; and the stable intermittent layer. Limitations of this framework are illustrated for the horizontal wind variances in the surface layer and the moisture flux in the mixed layer. Recent developments in prescribing surface layer stable profiles, top-down bottom-up scaling for the mixed layer, free-convection fluxes, generalised Rossby number similarity theory, and treatment of inhomogeneous surfaces are emphasised.

Introduction

Reg Clarke's name is synonymous with Australian studies of the atmospheric boundary layer (ABL). The ABL is the region of the atmosphere near the surface where small-scale turbulent transfer processes are important. Knowledge of its behaviour is essential for many practical problems from air pollution studies to climate modelling. Reg designed, organised and led a number of major field programmes in the 1960s and 70s to observe the structure of the ABL under a wide range of stability conditions. These included expeditions at Kerang, Victoria, in 1964 and Hay, NSW, in 1965 (Clarke 1970), the pre-Wangara experiments; at Hay, NSW, in 1967 (Clarke et al. 1971), the Wangara Experiment) and Daly Waters, NT, in 1974 (Clarke and Brook 1979), the Koorin Experiment). These studies have become classical experiments, providing researchers with a rich source of high quality data.

The pre-Wangara and Wangara Experiments were conducted over flat, relatively smooth terrain (roughness length $z_0 \approx 0.001 - 0.005$ m) in middle latitudes (34.5 and 35.8°S); the Koorin Experiment was conducted over savannah land covered by trees ($z_0 \approx 0.5$ m) at a low latitude (16°S). However even over a site, such as the Wangara site, carefully chosen to simplify the data interpretation, the atmosphere is often very complex (particularly under stable conditions) because of unsteadiness, inhomogeneities, accelerations, baroclinicity and intermittency. Most researchers have restricted their studies of the Wangara data to Day 33, a day dominated by thermal convection with little advection. (It should be noted in this regard that both the Wangara and the Koorin Experiments were conducted in winter-time, whereas the classical boundary layer experiments conducted in the United States, i.e. the Great Plains Experiment, the Kansas Experiment and the Minnesota Experiment, were conducted in the summertime.)

The main emphasis in Reg's ABL experiments was on mean profile measurements in the outer layer combined with momentum, heat and moisture flux estimates in the surface layer, estimates of surface roughness lengths and measurements of the horizontal gradients of surface pressure and temperature. In the early experiments the surface flux estimates were derived from mean profile measurements from masts and were checked with measurements of ground flux and net radiation and use of the equation for surface energy balance. As the electronics improved, direct eddy correlation measurements of the fluxes were introduced. During the Wangara Experiment preliminary eddy correlation measurements were made in the surface layer on five days. By the time of the Koorin Experiment eddy correlation measurements were routinely carried out in the surface layer and on two days eddy correlation

Corresponding author address: G.D. Hess, Bureau of Meteorology Research Centre, GPO Box 1289K, Melbourne, Vic 3001, Australia.
measurements of heat flux were made in the outer
layer from an instrumented aircraft.

Reg's experiments had a significant impact on
ABL research. The results appeared just at the
time when advances in computer technology were
making it possible to carry out sophisticated nu-
merical simulations of the ABL (higher-order
closure models and large-eddy simulations). The
observations from his experiments gave a touch-
stone with reality.

In this paper we shall present an overview of
some of the progress made in understanding the
ABL in the 25 years since the Wangara Experi-
ment. This review is by necessity selective rather
than comprehensive, emphasising observations
and scaling. Readers interested in learning more
about the ABL are referred to a number of excel-
 lent recent textbooks dealing with the atmos-
pheric boundary layer (Arya 1988; Stull 1988;
Sorbian 1989; Garratt 1992), general surveys on
the ABL (Friese 1987; Kaimal 1988; Wyngaard
1985, 1988b) and more specific surveys, such as
the convective boundary layer (Young 1988a,b,c,d;
Wyngaard 1988a), the stable boundary
layer (Hunt 1985), the marine boundary layer
(LeMone 1980; Businger 1985; Joffre 1985),
problems in the ABL and the evaluation of models
(Wyngaard 1990a,b), scalar structure in the ABL
(Webb 1984; Wyngaard 1990c), cloud-topped
boundary layers (WMO 1985; Driedonks and
Duynkerke 1989), measurement techniques
(Lenschow 1986), mixed-layer models (Dear-
dorff 1980; Driedonks 1982; Manins 1982), the
internal boundary layer (Garratt 1990), diffusion
in the ABL (Weil 1988; Venkatram 1988a,
1988b), higher-order closure modelling of the
ABL (Zeman 1981; Mellor and Yamada 1982;
Holt and Raman 1988), large-eddy simulation
(Wyngaard 1984), air-land interaction (ECMWF
1989; Brutsaert 1982) and air-sea interaction
(Thow 1988, 1989; Greeneraert and Plant 1990;
Donelan 1990). Readers also should consult the
extremely valuable earlier reviews (Monin and
Yaglom 1971, 1975; Haugen 1975; Wippermann
1973; Deardorff 1978; Blackadar 1979; McBean
1979; Nieuwstadt and van Dop 1982; Wyngaard
1983; Panofsky and Dutton 1984).

The role of observations has been a key element
in promoting our understanding of the ABL. Hess
et al. (1981) and Garratt and Hicks (1990) discuss
the goals and underlying philosophy, the main
results and some of the problems encountered in
five major Australian micrometeorological and
ABL expeditions. Similar discussions for other
important ABL experiments are: Lettau (1990),
the Great Plains Experiments; Kaimal and
Wyngaard (1990), the Kansas and Minnesota
Experiments; André et al. (1990), the HAPEX-
MOBILHY Experiment; Betts et al. (1990), the
FIFE Experiment; Hasse (1990), marine bound-
ary-layer experiments; and Panin (1990), air-sea
interaction experiments in the USSR. A partial
list of boundary-layer experiments is given by
Stull (1988, pp. 418–19). Reg's own interest in
the ABL continued until his death; his last three
papers (Clarke 1990a,b,c), published posthu-
mously, deal with observations and modelling of
the Koorin Experiment.

ABL scaling

Scaling is a technique used to help present and
interpret ABL data. Under steady, barotropic,
horizontally homogeneous, clear sky conditions it
is assumed that the ABL can be characterised by a
few physical parameters. When atmospheric data,
such as the differences in mean values at two
heights, variances, covariances, gradients, turbu-
 lent diffusivities, spectra and cospectra, etc., are
made non-dimensional by appropriate powers of
the characteristic parameters, plots of the data
versus non-dimensional height should be func-
tions only of the thermal stability.

Important parameters governing the processes
near the surface are the buoyancy flux $F_B = (g/\Theta_v)\overline{w\theta_v}$, and the momentum flux $\tau_0 = \rho \overline{u_0^2}$, where g is the acceleration due to gravity, w the fluctuating vertical velocity, θ_v and Θ_v the fluctuating and mean virtual potential temperature, respectively, ρ is the air density and u_0 the friction velocity. Other important scaling factors are the height above the surface z and the height of the turbulent layer h. When F_B is positive h is often limited by the base of a capping inversion.

The thermal stability in the surface layer ζ is
given by the ratio of the height z to the Obukhov
length L, i.e. $\zeta = z/L$, where L is given by

$$ L = -u_*^3/(k/\Theta_v) \overline{w^2 \theta_v} \ldots 1 $$

where k is the von Kármán constant. The thermal
stability for the whole boundary layer is given by
the ratio h/L.

A number of authors (Deardorff 1978; Nicholls
and Readings 1979; van Dop et al. 1980; Olesen
et al. 1984) have developed classification schemes
for ABL scaling. In Fig. 1 we show the scheme
proposed by Holtslag and Nieuwstadt (1986). For
positive buoyancy flux (Fig. 1(a)) the surface layer
extends to $z/h \approx 0.1$ and the physical parameters
of significance are z, τ_0, (g/Θ_v) and $\overline{w \theta_v}$, (for dry air $\overline{w \theta_v}$, becomes $\overline{w \theta}$). These are the scaling parame-
eters of the Monin and Obukhov (1954) simi-
arity theory. As the surface layer becomes more
unstable the importance of buoyancy flux in-
creases and momentum flux decreases. Eventu-
ally the momentum flux is no longer an important
parameter and the layer is said to follow free con-
vection scaling. Holtslag and Nieuwstadt suggest
that the transition from surface layer scaling to
free convection scaling occurs between $-h/L \approx 5$
to 10. The demarcation between the regimes is
Fig. 1 Schematic diagram indicating ABL scaling regions and physical parameters of importance. (a) Unstable case (positive buoyancy, L < 0). Instability increases as -h/L increases. The dashed and solid lines indicate the transition region to the convective state. (b) Stable case (negative buoyancy, L > 0). Stability increases as h/L increases. The dashed line is prescribed by z/L = 1. Comparison of the dashed and solid lines shows where the local length-scale \(\Lambda \) is approximately equal to the Obukhov length \(L \), based on surface fluxes (after Holtslag and Nieuwstadt (1986)).

...gradual and other authors (see below) choose different limits.

For \(0.1 < z/h < 0.8 \) and \(-h/L < 5 \) to 10 the layer is near neutral. In this region the height of the inversion h and the Monin–Obukhov (M–O) surface layer parameters are important. For \(-h/L > 10 \) free convection scaling is modified to mixed layer scaling by replacing z with h.

The region \(0.8 \leq z/h \leq 1.2 \) is called the entrainment region. In this zone the warm air from the capping inversion mixes with the boundary-layer air and the simple scaling scheme, described above, does not apply. We shall return to this region later when we discuss the top-down and bottom-up diffusion in the section on mixed-layer similarity scaling.

When the buoyancy flux is negative the flow is stably stratified (see Fig. 1(b)). Again we have a Monin–Obukhov surface layer and a near-neutral upper layer. In the region above the surface layer Monin–Obukhov scaling applies, provided that local values of the fluxes are used. The length scale \(\Lambda \) plays the role of \(L \) and is defined as in Eqn 1 except that the surface fluxes \(\tau_{0} \) and \(\bar{w}\theta_{0} \) are replaced by local values \(\tau \) and \(\bar{w}\theta \). As the flow becomes more stable the height above the surface becomes less important. At very great stability the turbulence becomes intermittent.

The viscous sublayer at the surface (see Brutsaert 1982; Garratt 1992) is not shown in Fig. 1. In the sections below we consider each of the regions of Fig. 1 separately. Because of the limitations of space, spectra and cospectra, structure functions, structure parameters and most of the budgets of turbulent fluxes and variances are not discussed (see Stull (1988), Sorbjan (1989), Garratt (1992), for example).

Monin–Obukhov surface-layer scaling

Based on the M–O parameters, scales for non-dimensionalising the velocity, temperature and humidity can be defined as:

\[
u_{*} = (\tau_{0}/\rho)^{1/2}, T_{*} = \bar{w}\theta_{0}/v_{*} \quad \text{and} \quad q_{*} = -\bar{w}q_{0}/v_{*}
\]

where \(q \) is the fluctuating specific humidity. The surface-layer gradients can be written in non-dimensional form as:

\[
\phi_{M}(\zeta) = (kz/v_{*}) \frac{\partial U}{\partial z} \quad \ldots \ 3
\]

\[
\phi_{H}(\zeta) = (kz/T_{*}) \frac{\partial \theta_{v}}{\partial z} \quad \ldots \ 4
\]

\[
\phi_{Q}(\zeta) = (kz/q_{*}) \frac{\partial Q}{\partial z} \quad \ldots \ 5
\]

where \(U, \theta_{v} \) and \(Q \) indicate mean values of the wind speed, virtual potential temperature and specific humidity, respectively. Observations (mainly over land) show that for passive scalars the M–O non-dimensional gradients are equal, i.e. \(\phi_{Q}(\zeta) = \phi_{H}(\zeta) \).
Other relevant quantities in describing the dynamics of the surface layer are the dissipation of turbulent kinetic energy ε, the standard deviation of w (denoted σ_w), and the standard deviation of θ_v (denoted σ_θ_v). Their non-dimensional forms are:

\[\phi_e(ζ) = (kze/u^3_0) \]
\[\phi_w(ζ) = σ_w/\bar{u}_* \]
\[\phi_θ_v(ζ) = σ_θ_v/\bar{T}_v \]

The standard deviations of the horizontal wind components u and v do not obey M–O scaling and will be discussed later.

The functional forms for Eqs 3 to 8 ultimately must be determined experimentally. Kaimal (1988) has re-analysed the Kansas data (Businger et al. 1971; Wyngaard and Coté 1971). Based on these observations and those summarised by Dyer (1974) and Högström (1988) he recommends the following:

\[\phi_M = \begin{cases} (1 - 16 \frac{z}{L})^{-1/4} & -2 \leq \frac{z}{L} \leq 0 \\ (1 + 5 \frac{z}{L}) & 0 \leq \frac{z}{L} \leq 1 \end{cases} \]
\[\phi_H = \phi_Q = \begin{cases} (1 - 16 \frac{z}{L})^{-1/2} & -2 \leq \frac{z}{L} \leq 0 \\ (1 + 5 \frac{z}{L}) & 0 \leq \frac{z}{L} \leq 1 \end{cases} \]
\[\phi_ε = \begin{cases} (1 + 0.5z/L)^{1/2} & -2 \leq \frac{z}{L} \leq 0 \\ (1 + 5 \frac{z}{L}) & 0 \leq \frac{z}{L} \leq 1 \end{cases} \]
\[\phi_w = \begin{cases} 1.25 (1 - 3 \frac{z}{L})^{1/3} & -2 \leq \frac{z}{L} \leq 0 \\ 1.25 (1 + 0.2 \frac{z}{L}) & 0 \leq \frac{z}{L} \leq 1 \end{cases} \]
\[\phi_θ_v = \begin{cases} 3 (1 - 16 \frac{z}{L})^{-1/2} & -2 \leq \frac{z}{L} \leq 0 \\ 3 (1 + \frac{z}{L})^{-1} & 0 \leq \frac{z}{L} \leq 1 \end{cases} \]

These formulations assume that k = 0.4 (see e.g., Zhang et al. 1988) and the neutral turbulent Prandtl number Pr is unity, i.e. \(\phi_M(0)/\phi_M(0) = 1 \). The formulations of other investigators have been summarised by Sorbjan (1989, pp. 74–6). The M–O similarity functions given by Eqs 9 to 13 are plotted in Fig. 2.

Integration of Eqs 9 and 10 formally can be written as:

\[k \frac{(U - U_0)}{u_*} = \ln \left(\frac{z}{z_0} \right) - \Psi_M(\frac{z}{L}) + \Psi_M(\frac{z}{L}) \]
\[k \frac{(\Theta_v - \Theta_0_v)}{\bar{T}_v} = \ln \left(\frac{z}{z_H} \right) - \Psi_H(\frac{z}{L}) + \Psi_H(\frac{z}{L}) \]
\[k \frac{(Q - Q_0)}{v_0} = \ln \left(\frac{z}{z_Q} \right) - \Psi_Q(\frac{z}{L}) + \Psi_Q(\frac{z}{L}) \]

where \(U_0 = 0 \) over land; over the sea the surface drift current \(U_0 \) is \(Q(u_w) \).

The parameters \(z_0, z_H \), and \(z_H \) are the roughness lengths for momentum, heat and moisture, respectively. For large roughness elements a zero-plane displacement needs to be introduced to account for the canopy effect. The roughness length is determined by extrapolating the M–O profiles downward and finding the heights above the zero-plane displacement at which the surface values \(U_0, \Theta_v \) and \(Q_0 \) are obtained. Equations 14 to 16 lose accuracy below heights about 100 times the roughness length (Garratt 1980).

Although it is generally accepted that \(z_0 = z_H \) over land, \(z_0 \neq z_H \). Measurements over homogeneous, densely packed, vegetated surfaces typically indicate that \(z_H \approx z_0/10 \) (see e.g., Garratt and Hicks 1973; Brutsaert 1982). Recently Beljaars and Holtslag (1991) have found that \(z_H \approx z_0/6 (6.4 \times 10^3) \) for the flat grassland at the Cabauw tower in Holland (with a minimum of a 200 m, apparently uniform, fetch in all directions). They obtained a similar value based on the MESOER-ERS-84 data (southern France), using surface radiation temperature measurements from aircraft flights. Their results correspond to a temperature difference of up to 6K between the heights \(z_0 \) and \(z_H \). Beljaars and Holtslag attribute this large temperature jump to mesoscale inhomogeneities. We shall return to this topic later.

Over the sea the roughness lengths are given by simple interpolation formulas between rough flow over gravity waves and smooth flow (Charnock 1955; Smith 1988, 1989; Liu et al. 1979; Godfrey and Beljaars 1991)

\[z_0 = \alpha u_*/g + a_U \bar{v}/u_* \]
\[z_H = 1.4 \times 10^{-5} + a_\tau \bar{v}/u_* \]
\[z_Q = 1.3 \times 10^{-4} + a_Q \bar{v}/u_* \]

where \(v \) is the kinematic viscosity of air and \(\alpha = 0.011 \) for open ocean. Smith suggests that the higher values of \(\alpha \) obtained earlier by Garratt (1977) (\(\alpha = 0.014 \) for \(k = 0.41; \alpha = 0.017 \) for \(k = 0.4 \)) and Wu (1980) (\(\alpha = 0.0185 \)) reflect data with limited fetch and depth. In Eqn 17 \(a_U = 0.11 \), but the values of \(a_\tau \) and \(a_Q \) in Eqs 18 and 19 are uncertain; they lie in the range 0.2 to 0.6. More complex relations for \(z_0 \), depending on the sea state are discussed by Donelan (1990).
In Eqs 14 to 16 the profile stability corrections are given by (Paulson 1970):

\[\Psi_M = \begin{cases} 2 \ln (1 + x) + \ln (1 + x^2) - 2 \tan^{-1} x & -2 \leq z/L \leq 0 \\ -5 \zeta & 0 \leq z/L \leq 1 \end{cases} \]

\[\Psi_H = \Psi_Q = \begin{cases} 2 \ln (1 + x^2) & -2 \leq z/L \leq 0 \\ -5 \zeta & 0 \leq z/L \leq 1 \end{cases} \]

where \(x = (1 - \gamma \zeta)^{1/4}, \gamma \approx 16, \) and \(\zeta \) is the argument of the \(\Psi \) functions \((z/L, z_0/L, z_H/L) \) or \(z_Q/L). \) If \(z_0, z_H, z_Q \ll L \) then at the roughness length limit \(x \approx 1 \), Eqn 20(a) yields \(\Psi_M(z_0/L) \approx 3 \ln 2 - \pi/2 \) and Eqn 21(a) yields \(\Psi_H(z_0/L) = \Psi_Q(z_0/L) \approx 2 \ln 2 \).

Webb (1970) and Hicks (1976) find that the profiles in stable conditions deviate from the log-linear form of Eqn 20(b) and Eqn 21(b) for \(z/L \approx 0.5 \). As the stability increases the turbulence becomes more intermittent and the exchange processes for heat and momentum become dissimilar \((\phi_H > \phi_M)\). Beljaars and Holtslag (1991) suggest the following relations for stable conditions, based on Cabauw tower data, to account for profile dissimilarity:

\[-\Psi_M = a z/L + b (z/L - c/d) \exp(-d z/L) + b/c/d \]

\[-\Psi_H = (1 + 2a)/(3L)^{1/2} + b (z/L - c/d) \exp(-d z/L) + b/c/d - 1 \]

where \(a = 1.0, b = 0.667, c = 5, d = 0.35 \). They find that Eqs 22 and 23 can be extended well above the surface layer and seem to incorporate the relationship between the local and surface fluxes. At large values of \(z/L \) these relations yield a flux Richardson number \((R_i \equiv z/L \phi_M')\) which approaches a constant.

Equations 14 to 16 are usually solved iteratively (e.g. Delsol et al. 1971) or by approximation by fitting functions (Louis 1979). Recently analytical, approximate and regression solutions have been obtained for special cases by Choudhury et al. (1986), Byun (1990) and Viney (1991).

Free convection

In the free convection layer the buoyancy flux is positive and large and the winds are light. The scales for velocity, temperature and humidity are:

\[u_r = \frac{(g/\Theta_v)\Theta_0 u_r}{(z/L)^{1/3}} \]

\[u_r = \frac{\Theta_0}{\Theta_v} \]

Since the available scales cannot be combined to form a non-dimensional height, all non-dimensional quantities should be constant. For example, Wyngaard and Coté (1971) find

\[\sigma_u/u_r = 1.8 \quad \text{and} \quad \sigma_0/\Theta_v = 0.95 \]

The non-dimensional eddy diffusivities become \(K_M/u_r \approx \text{constant}, \ K_H/u_r \approx \text{constant} \) and the non-dimensional wind and potential temperature gradients become \((u_d u_r)^2 (k_z/\Theta_v) \partial U/\partial z \approx \text{constant} \) and \((k_z/\Theta_v) \partial \Theta_v/\partial z \approx \text{constant} \); hence

\[\phi_M(\zeta) \sim \phi_H(\zeta) \sim \phi_Q(\zeta) \sim (-\zeta)^{-1/3} \]

\[\phi_e(\zeta) = -0.35 \zeta \]

\[\phi_u(\zeta) = 1.8 (-\zeta)^{1/3} \]

\[\phi_\theta(\zeta) = 0.95 (-\zeta)^{-1/3} \]

Note that Eqs 9(a), 10(a) and 13(a) are empirical equations for data in the range \(-2 \leq \zeta \leq 0\) and do not have the correct asymptotic form for free convection. In Fig. 3 we show some preliminary results for the stability dependence of \(\phi_M \) in very unstable conditions, illustrating the changeover from Eqn 9(a) to Eqn 26 (Carl et al. 1973). As \(\zeta \to -\infty \) the gradients become small and measurements are difficult. The \(\phi \) functions in this region have not been adequately documented experimentally.

Fig. 3 Non-dimensional wind shear \(\phi_M \) as a function of stability for very unstable conditions (after Carl et al. 1973)

We now turn our attention to light wind, highly convective conditions over the sea. The fluxes can be parametrised by introducing bulk transfer coefficients, \(C_D, C_H \) and \(C_E \):

\[\tau_0 = \rho C_D (U - U_0)^2 \quad \text{... 30} \]

\[H_0 = \rho c_p C_H (U - U_0) (\Theta_0 - \Theta) \quad \text{... 31} \]

\[E_0 = \rho C_E (U - U_0) (Q_0 - Q) \quad \text{... 32} \]

where \(C_D, C_H \) and \(C_E \) have been found in moderate wind speeds to be constant or a linear function of wind speed (e.g. Smith 1988). We can write explicit relations for the bulk transfer coefficients, using Eqns 14 to 16.
where the reference height for U, Θ and Q is usually taken to be 10 m. In the literature it is common to specify the bulk transfer coefficients relative to their values at neutral stability (C_{DN}, C_{HN} and C_{EN}), i.e. where the sums of the Ψ functions in Eqs 33 to 35 are each zero.

Bradley et al. (1991) present what appear to be among the first published direct flux measurements covering the wind speed range 0–4 m s$^{-1}$ over open ocean (also see Golitsyn and Grachov (1986)). Their results show that the fluxes do not go to zero as the relative mean wind speed goes to zero, and hence the bulk transfer coefficients in this light-wind regime are no longer constant or linearly increasing with wind speed. Figure 4 shows the latent heat flux determined from their covariance measurements (expressed as E_0, where is the latent heat of vapourisation). When the measurements are extrapolated to zero wind speed, the latent heat flux has a value of about 25 W m$^{-2}$; the results from the inertial dissipation method give about 20 W m$^{-2}$. In the long term this flux at zero wind speed represents a significant transfer of energy not included by use of the bulk transfer forced convection equations.

Hicks (1975), Kondo (1975), Liu et al. (1979), and Miller et al. (1992) have developed models to account for the role of the molecular surface layer in computing the fluxes at low wind speeds. To test these models Bradley et al. (1991) have measured bulk coefficients at sea in free convection conditions (using $\gamma = 28$ in Eqn 20(a) and $\gamma = 14$ in Eqn 21(a) based on Dyer and Bradley (1982)). They compared their measurements with the predictions of C_{D}, C_{H} and C_{E} of Liu et al. (1979) and C_{DN}, C_{HN} and C_{EN} of Kondo (1975). The measured drag coefficient C_{D} (not shown) is higher than the predictions of Liu et al., but lower than the empirical relation developed by Geernaert et al. (1988), using data at higher wind speeds. In Fig. 5 we show their results for C_{HN} and C_{EN}. The agreement between observations and the Liu et al. model is excellent for C_{E}; the agreement is less good for C_{H} but the heat flux is relatively small and there is more scatter in the data. In each case for $(U - U_0) < 2$ m s$^{-1}$, as the wind speed goes to zero the bulk transfer coefficient increases, confirming the predicted trend in the models. Similar experimental results have been obtained by Chris Fairall (personal communication).
Fig. 5 Eddy-correlations measurements of the bulk transfer coefficients for (a) water vapour C_E and C_{EN} and (b) sensible heat C_H and C_{HN}. The measurements are compared with model predictions by Liu et al. (1979) (long-dashed curve) for C_E and C_H, and Kondo (1975) (solid line curve) for C_{EN} and C_{HN} (after Bradley et al. (1991)).

Similar calculations could be carried out for ϕ functions proposed by Carl et al. (1973) which obey the free convection limit.

There are singularities at $\xi = 1/C_0$ and $1/C_1$ in Efn 39) but in the atmosphere these are probably never encountered. Atmospheric convective downdrafts create horizontal wind fluctuations even if the mean wind approaches zero (Deardorff 1972; Businger 1973; Schumann 1988; Schmidt and Schumann 1989; Miller et al. 1992). These fluctuations scale with the mixed-layer convective velocity, w_c:

$$w_G = \beta \ w_c$$

where $w_c = [(g/\Theta_c) \bar{w}\bar{\theta}_b, h]^{1/3}$ and β is a constant (for dry convection Deardorff (1972) finds $\beta = 0.7$, while Miller et al. (1992) use $\beta = 1$; for moist convection the parameterisation problem is more complex and has not yet been solved). Godfrey and Beljaars (1991) suggest that β should be adjusted to maximise model agreement with observations. They note that replacing $(U - U_0)$ with $((U - U_0)^2 + w_G^2)^{1/2}$ in Eqn 39 automatically removes the low wind speed singularity for boundary-layer depths of ~ 1000 m or greater.

Near-neutral upper layer scaling

The ABL over the sea is cooler and less convective than over land and often falls into the near-neutral category for $z > 0.1$ h. This category also applies over land when there are strong winds or when the elevation angle of the sun is very low. In this layer mechanical mixing is important even at large values of z/h. Hence the velocity, temperature and humidity scale as in the M-O surface layer (i.e. with u_*, T_*, v_* and q_*), but the height h is also a relevant scale.

Nicholls and Readings (1979) present observations over the sea for two stability classes (see Fig. 6). The average stability of the circles is $-h/L = 0.9$ and of the triangles is $-h/L = 3.9$. The profiles are limited to $z/h < 0.7$ to minimise the effects of clouds and entrainment processes. The U profile shows the effect of greater mixing (less momentum defect) for increased instability while the V profile is unchanged in the two classes. The potential temperature lapse rate closely approximates the dry adiabatic rate, but the specific humidity decreases linearly with height indicating
Fig. 6 Non-dimensional mean profiles for (a) U/u_*, (b) V/u_*, (c) $(\Theta - \Theta_{10})$ and (d) $(Q - Q_{10})$ in near-neutral conditions. The subscript 10 indicates that the quantity is evaluation at 10 m height. The height z_1 is inversion height (i.e. $z_1 = h$). The circles denote near-neutral values (average $-h/L = 0.9$); the triangles denote slightly unstable values (average $-h/L = 3.9$); error bars indicate the standard error of the mean (after Nicholls and Readings (1979)).

Fig. 7 Non-dimensional flux profiles for (a) \overline{uw}/u_*^2, (b) \overline{vw}/u_*^2, (c) \overline{wT}/u_*T, and (d) \overline{wq}/u_*q, in near-neutral conditions. T' is the fluctuating temperature ($T' \equiv 0$). Notation for stability classes is the same as in Fig. 7 (after Nicholls and Readings (1979)).

The influence of a dry-air inversion aloft which serves as a source for sensible heat and a sink for moisture. Similar results were found by Donelan and Miyake (1973) and Pennell and LeMone (1974).

Figure 7 shows the flux profiles measured by Nicholls and Readings (1979). Both stability classes give the same shape for the profiles. The fluxes uw and wT' decrease monotonically with height in Fig. 7 whereas vw and wq have maxima near 0.2 h. Although the measurements have been limited to the region below the entrainment layer, the shape of the temperature flux profile is consistent with negative values in the entrainment layer. Extrapolation of the humidity flux profile to the top of the ABL gives positive values. These results are in agreement with the measurements of Pennell and LeMone (1974) who measured the profiles up to the top of the ABL under fair weather conditions (with cloudbands) ($-h/L = 1.5$) and found negative temperature fluxes and positive humidity fluxes in the entrainment region.

Profiles of the standard deviations of u, v, w, θ and q were also measured by Nicholls and Readings (1979) (not shown). The data for each stability class, when scaled, collapse into distinct lines; however there is a strong dependence on stability for these variables. The σ_w/u_* profile shows a maximum at ~ 0.1 h for the near-neutral data ($-h/L = 0.9$). For the slightly unstable data ($-h/L = 3.9$), the maximum is higher (at ~ 0.5 h) and more pronounced. The horizontal components also show strong variations with stability. Near neutral σ_u/u_* and σ_v especially near the surface, but for the slightly unstable class the two components are approximately equal. The equation for σ_u and σ_v in the surface layer, proposed by Panofsky et al. (1977):

$$\sigma_u/u_* = \sigma_v/u_* = \left(12 - 0.5 h/L\right)^{1/3} \ldots (41)$$

describes the behaviour of the slightly unstable class, but not the near-neutral case. The standard deviation for temperature and humidity are similar to one another and show strong dependence on stability.
The equation describing the budget of turbulent kinetic energy in steady, horizontally homogeneous conditions can be written as:

$$\frac{\tau}{\rho} \frac{\partial V}{\partial z} + \frac{g}{T_v} W T_v - \frac{\partial e}{\partial z} = R \quad \ldots \ldots 42$$

where the first term represents the shear production, the second the buoyancy production, the third the divergence of the vertical transport of turbulent kinetic energy e, the fourth the dissipation and the term on the right is the residual term (mainly the divergence of the pressure-velocity covariance but would also include measurement errors). The profiles of each of the above terms have been measured by Pennell and LeMone (1974) (not shown). They compare the measurements to the model predictions of Lenschow (1974), which was developed for convective conditions where the shear term is insignificant. For near-neutral upper layer, however, the shear term is important and Pennell and LeMone use the measured shear term in their comparison. The agreement between the observations and the model is very good, although it is not completely definitive because the observed shear was used in the model.

Mixed-layer scaling

As the stability parameter $-h/L$ becomes large, convective motions in the region above the surface layer ($z/h > 0.1$) act to destroy the gradients of mean quantities and produce nearly uniform profiles of U, V and Θ. This layer is known as the mixed layer. Usually the profile of Q is less uniform with height than Θ, because of entrainment of drier air at the top of the ABL. Figure 8 shows the profiles of mean wind, geostrophic wind, potential temperature and specific humidity for 1500 local time of Day 33 of the Wangara Experiment ($-h/L \approx 120$).

The scales for velocity, temperature and humidity in this layer are:

$$w_s = (gh/\Theta_s)^{1/3} \bar{w}, \quad \Theta_s = \bar{w} \Theta_0/w_s, \quad Q_s = \bar{w} Q_0/w_s \quad \ldots \ldots 43$$

In Fig. 9 we show non-dimensional profiles of virtual potential temperature and specific humidity for five days of measurements in a maritime convective boundary layer, 70 km east of Townsville (Hartmann 1990) ($5.5 \leq -h/L \leq 15.2$, average $-h/L = 10.0$). The slope of $\Theta_s/\Theta_* \approx 0$ and $Q_s/Q_* \approx -6$ throughout most of the mixed layer is consistent with the results of AMTEX (Wyngaard et al. 1978).

The non-dimensional gradient of the mean value of any passive scalar variable C in the mixed layer can be written as the sum of two functions, one (g_s) representing top-down diffusion (driven by entrainment processes at the top of the ABL) and the other (g_b) bottom-up diffusion (driven by surface forcing):

$$(h/c_s) \frac{\partial C}{\partial z} = g_b(z/h) + g_s(z/h) \quad \ldots \ldots 44$$

where c_s is the mixed-layer scale for C. Moeng and Wyngaard (1984) and Sorbjan (1989, pp. 102-121) derive asymmetrical expressions for g_b and g_s. As seen in Fig. 9 the data give good agreement with the integral of Eqn 44, using the expressions of Moeng and Wyngaard, and Sorbjan. The diffusivities for Θ, and Q are nearly equal in bottom-
up diffusion and are larger than their respective values for top-down diffusion. Also the magnitude of the diffusivity for Q is nearly four times larger than the one for Θ_v for top-down diffusion, indicating that moisture is transferred much more efficiently than buoyancy in this process.

Figure 10 shows the non-dimensional profiles for the heat and moisture fluxes (Hartmann 1990). The heat flux (Fig. 10(a)) decreases linearly with height and becomes negative at $z = h - 0.75$. The ratio of the interfacial heat flux (at $z = h$) to the surface value is -0.33 in these measurements. The profile of the buoyancy flux ($g/\Theta_v \overline{w_\Theta}$) exhibits similar behaviour, decreasing linearly with height, becoming negative at $z = 0.86$ and having an interfacial to surface ratio of -0.165. However, the measurements for the moisture flux (Fig. 10(b)) do not obey mixed-layer scaling, i.e. they do not collapse onto a single curve (also see LeMone 1980; Druilhet et al. 1983). The upper part of the profile is dominated by entrainment dynamics, rather than the surface flux. The top-down moisture flux $\overline{w_\Theta}$ can be defined by subtracting the bottom-up flux from the total flux:

$$\overline{w_\Theta} = \overline{w_\Theta} - \overline{w_\Theta}_0 (1 - z/h) \quad \ldots \quad 45$$

The appropriate scales for the top-down moisture flux are w_\ast and q_\ast, where

$$q_\ast = \frac{\overline{w_\Theta}}{w_\ast} \quad \ldots \quad 46$$

and $\overline{w_\Theta}$ is the interfacial moisture flux. A plot of the non-dimensional profile of $\overline{w_\Theta}$ is given in Fig. 11. Although the measurements still show appreciable scatter, a linear profile emerges. Other studies (e.g. some profiles from LeMone 1980; Wayland and Raman 1989; Chou and Ferguson 1991) measure q_\ast profiles that do obey mixed-layer scaling and decrease linearly with height in a similar way to the w_Θ profile, but remain positive at all heights $z \ll h$.

![Fig. 10 Non-dimensional profiles of (a) heat flux and (b) moisture flux for the ECOS data, using mixed-layer scaling (after Hartmann (1990)).](image_url)

![Fig. 11 Non-dimensional profile of top-down moisture flux for the ECOS data, using interfacial scaling (after Hartmann (1990)). The line represents $\overline{w_\Theta} = z/h$.](image_url)

The measurements so far have included the contributions of low frequency, large eddies. In large eddy simulation (LES) models the grid spacing is about 50 to 100 m. Below this limit the turbulent transport processes must be parameterised. Figure 12 shows non-dimensional profiles of $\overline{w_\Theta}$, $\overline{w_\Theta}$ and $\overline{w_\Theta}$ computed from high-pass filtered data with a cut-off wavelength of 0.1 h (Hartmann 1990). In each case the data collapse to a single curve and remain positive at all heights, indicating that the entrainment dynamics (negative fluxes and top-down diffusion of $\overline{w_\Theta}$) is a low frequency phenomenon. Some LES models, on the other hand, have a tendency to produce negative subgrid-scale heat fluxes near the inversion (e.g. Moeng 1984; Schmidt and Schumak 1989) which indicates a defect in their subgrid-scale parametrisation.

In Figs 13 to 15 we present atmospheric data (Caughey and Palmer 1979; Lenschow et al. 1980; Druilhet et al. 1983; and Hartmann 1990) and laboratory data (Adrian et al. 1986; Deardorff and Willis 1985; Kumar and Adrian 1986) for variances of vertical velocity, potential temperature and moisture in the mixed layer. The solid line indicates the free convection-layer prediction:

$$\overline{w^2}/w^2 = 1.8 \left(z/h\right)^{2/3} \quad \ldots \quad 47$$

The measurements in Fig. 13 show significant deviations from this curve by $z = 0.1$ h. This expression was modified by Lenschow et al. (1980) to fit the AMTEX data by making the right-hand side of Eqn 47 equal to 1.8 $(z/h)^{2/3} (1 - 0.8 z/h)^2$. The laboratory data agree well with the atmospheric data up to $z \approx 0.75$ h, but above that height
Fig. 12 Non-dimensional profiles of (a) buoyancy flux, (b) heat flux and (c) moisture flux in convective conditions computed from ECOS data treated with high-pass filters with a cut-off wavelength of 0.1 h (after Hartmann (1990)).

Fig. 13 Non-dimensional profile of vertical velocity variance from ECOS data in convective conditions compared with laboratory and atmospheric data. CP79 refers to the Minnesota/Ashchurch data (Caughey and Palmer 1979), LWP80 to the AMTEX data (Lenschow et al. 1980) and DFGF83 to aircraft data over France (Druhl et al. 1983). The thick dashed lines refer to laboratory experiments: AFB86: Adrian et al. (1986); DW85: Deardorff and Willis (1985); KA86: Kumar and Adrian (1986) (after Hartmann 1990).

Fig. 14 The same as Fig. 13, except for non-dimensional potential temperature variance (after Hartmann (1990)).

These statistics and others, such as \(\bar{q} \), \(w^2 \), \(\bar{\theta}_e^2 \), \(\bar{w}\theta_e^2 \) and \(\bar{w}^2 \), in the mixed layer can be decomposed into top-down and bottom-up components and scaled with local variables to give a description of the entire profile (Sorbian 1989, 102–21; Hartmann 1990).

The turbulent energy budget for convective conditions (with stratocumulus cloud and strong cold advection) \((-\bar{h}/L \approx 32\) was measured during the AMTEX Experiment by Lenschow et al. (1980) (not shown). Again the pressure-velocity correlation term was not measured. The magnitude of the shear term decreases rapidly with height. The sum of the buoyancy and transport terms is balanced by the dissipation term throughout most of the ABL. Their residual term is small.

Recently there has been much interest in the organised, coherent structures which form in the convective boundary layer. These include rolls and cloud streets (when some wind shear is still
Fig. 15 The same as Fig. 13, except for non-dimensional specific humidity variance (after Hartmann (1990)). Note only the AMTEX data are available for comparison.

\[
\mathcal{U}_u = (\tau(z)/\rho)^{1/2}, \mathcal{E}_v = -\bar{w}_\theta(z)/\mathcal{U}_u \\
\text{and} \quad \mathcal{Q}_\theta = -\bar{q}_\theta(z)/\mathcal{U}_u \quad \ldots 48
\]

Immediately above the surface layer the non-dimensional gradients, for example, can be written as:

\[
(kz/\mathcal{U}_u) \partial (U^2 + V^2)^{1/2}/\partial z = F_u(z/\Lambda), \quad (kz/\mathcal{E}_v) \partial \Theta_v/\partial z = F_{\theta v}(z/\Lambda) \\
\text{and} \quad (kz/\mathcal{Q}_\theta) \partial Q/\partial z = F_q(z/\Lambda) \quad \ldots 49
\]

As \(z/\Lambda\) increases the flow eventually becomes stable enough so that \(z\) is no longer an important parameter (at \(z/\Lambda \approx 1\), and non-dimensional quantities should approach constant values; for example:

\[
(k\Lambda/\mathcal{U}_u) \partial (U^2 + V^2)^{1/2}/\partial z = A_{u v}, \quad (k\Lambda/\mathcal{E}_v) \partial \Theta_v/\partial z = A_{\theta v} \\
\text{and} \quad (k\Lambda/\mathcal{Q}_\theta) \partial Q/\partial z = A_q \quad \ldots 50
\]

Near the ground where \(\Lambda \approx L\) integration of Eqn 50 gives linear profiles which have been observed by Hicks (1976) and Kondo et al. (1978).

Under these conditions the variances become:

\[
\sigma_1^2(z)/\mathcal{U}_u^2 = C_1, \quad \varepsilon(z)/\mathcal{U}_u^2 = \varepsilon_c \\
\text{and} \quad \sigma_\theta^2(z)/\mathcal{E}_v^2 = C_{\theta v} \quad \ldots 51
\]

where \(i = u, v \text{ or } w\) and the \(C_s\) are constants.

Nieuwstadt (1984, 1985) has demonstrated this scaling for Cabauw tower data and Sorbjan (1989) for the Minnesota tethered balloon data. Here we present the aircraft data of Lenschow et al. (1988a, b) for the SEASME Experiment in central Oklahoma. The data were collected during constant-level flights over grass-covered rolling hills a few tens of metres high. The flights were in the early evening or early morning and the average stability for the four flights was \(h/L = 1.6\).

Figure 16 shows the profiles for the mean wind speed and direction, potential temperature, Richardson number, turbulent kinetic energy and temperature variance for Flights 4, 5 and 6. Flights 5 and 6 show very strong nocturnal supergeostrophic jets (130 per cent and 50 per cent greater than geostrophic, respectively) due to terrain slope effects and the diurnal variations in eddy stress and buoyancy forces.

The height of the stable boundary layer \(h\) is more difficult to determine than in the convective case. Lenschow et al. define \(h\) as the height where \(e\) drops to five per cent of its near-surface value (200, 300 and 400 m, respectively, for Flights 4, 5 and 6). Zilitinkevich (1972) proposes that in steady, equilibrium conditions \(h\) is given by:

\[
h|f|/u_e = d (u_e/f/L)^{-1/2} \quad \ldots 52
\]

where \(f\) is the Coriolis parameter and \(d\) a universal constant. In practice \(d\) decreases with time after sunset. Lenschow et al. find an average \(d\) for four flights of 0.37 which is consistent with previous observations (Caughey et al. 1979; Garratt 1982), but there is considerable scatter. Based on a nu-

Local similarity in stable conditions

Nieuwstadt (1984, 1985), Sorbjan (1989) and Derbyshire (1990) have extended similarity theory to the upper part of the stable boundary layer by replacing the surface turbulence scales \(u_*, T_*,\) and \(q_0\) with local values.
Fig. 16 Profiles of the mean wind speed and direction, potential temperature, Richardson number (for Flights 5 and 6), turbulent kinetic energy and temperature variance for Flights 4, 5 and 6 in stable conditions with continuous turbulence (after Lenschow et al. (1988a)).

Numerical study Estournal and Guedalia (1990) develop a parametrisation for d' in the simpler relation $h f / u_* = d'$.

The shapes of the profiles of stress and heat flux in stable conditions have been predicted by simple analytical models based on constant flux Richardson number (Nieuwstadt 1984, 1985; Sorbjan 1989; Lenschow et al. 1988a; Derbyshire 1990). They find:

$$\tau(z)/\rho = u_*^2 (1 - z/h)^{\alpha_1} \quad \ldots \quad 53$$

$$w \theta = w \theta_0 (1 - z/h)^{\alpha_2} \quad \ldots \quad 54$$

Unfortunately these are not similarity expressions and α_1 and α_2 are not universal constants, but depend on the time after sunset, baroclinicity, slope of terrain, etc. (Sorbjan 1989). Lenschow et al. find $\alpha_1 = 1.75$ and $\alpha_2 = 1.5$; Nieuwstadt (1984) finds $\alpha_1 = 1.5$ and $\alpha_2 = 1.0$ for the Cabauw data in quasi-steady conditions several hours after the transition; Sorbjan (1989) finds $\alpha_1 = 2$ and $\alpha_2 = 3$ for the strongly evolving transition period of the Minnesota data. Figure 17 shows the data of Lenschow et al. for the momentum and heat flux profiles. The data agree with the predicted relations, but the large scatter doesn’t rule out other exponents.

If Eqs 53 and 54 are combined with Eqn 51 then the variances can be determined as a function of height. For example, variances normalised by the square of the surface friction are predicted to follow the relation $\sim (1 - z/h)^{1.75}$.

Lenschow et al. (1988a) also measured profiles of the terms in the turbulent energy budget. Again the pressure-velocity correlation term was not measured. In this stability regime the budget is

Fig. 17 Profiles of (a) momentum flux and (b) heat flux normalised by the values at the lowest flight levels in stable conditions with continuous turbulence (after Lenschow et al. (1988a)).

(a)

(b)
mainly a balance between shear production and turbulent energy dissipation, however they found a significant residual in their measurements.

Stable intermittent layer

As $h/L \to \infty$ the turbulence becomes intermittent. Wittich (1991) has studied the stable intermittent layer using data from a 300 m tower near Sprakensehl, northern Germany. Turbulent fluxes were not directly measured but were determined by integration of the geostrophic departure and thermal energy equations.

The vertical profiles of mean wind speed and temperature, local cooling rate and Richardson number are shown in Fig. 18 for a clear night with $h/L \approx 17$. The height of the surface inversion layer is ≈ 40 m and $h \approx 185$ m. The various terms contributing to the local cooling rate were also measured (not shown). The turbulent heat flux and the advection terms dominate the balance throughout most of the boundary layer. Near the top of the boundary layer $0.8 < z/h < 1$ radiational cooling is greater than turbulent cooling.

A comparison of the Sprakensehl data with other observations of non-dimensional momentum and heat flux profiles is given in Fig. 19. All of the profiles have the same general shape. The Sprakensehl data give $a_1 = 2$ and $a_2 = 1.5$. The lack of scatter evident in the Sprakensehl is a result of the amount of smoothing inherent in the integral techniques. Because of the uncertainties in obtaining reliable assessments of the geostrophic wind and in the boundary conditions, direct eddy correlation measurements of the fluxes are generally preferred. However in very stable conditions the magnitudes of the fluxes are small and direct measurement may be difficult or

![Fig. 18 Profiles of mean wind speed, temperature, local cooling rate and Richardson number in stable conditions with intermittent turbulence. The depth of the surface inversion layer h and the nocturnal boundary layer h are indicated (after Wittich (1991)).](image)

![Fig. 19 Non-dimensional profiles of (a) momentum flux and (b) heat flux in stable conditions with intermittent turbulence (after Wittich (1991)).](image)
impossible; integral methods are an alternative. A similar study of the stress profile in the stable intermittent boundary layer (at Plateau Station, Antarctica) was carried out by Lettau and Dabberdt (1970), using the geostrophic departure technique.

Profiles of the variances \(\mathbf{u}^2 \), \(\mathbf{v}^2 \), \(\mathbf{w}^2 \), \(\Theta^2 \) and \(q^2 \) have apparently not been well measured in the stable intermittent boundary layer. In the region \(L \ll z \ll h \) internal gravity waves are usually present in these conditions (see e.g. Cheung 1991). These waves would not transport much heat or moisture, but would be responsible for variances of \(\Theta \) and \(q \) given by (Deardorff 1978):

\[
\overline{\varepsilon}^2 = (1/2) (a \delta \Theta/\delta z)^2 \quad \ldots \quad 55
\]
\[
\overline{q}^2 = (1/2) (a \delta Q/\delta z)^2 \quad \ldots \quad 56
\]

where \(a \) is the amplitude of the wave. For \(a = 50 \) m and \(\delta \Theta/\delta z = 1 \) K/100 m, then \(\varepsilon^2 \) is \(O(0.3 K) \) independent of the surface fluxes.

Generalised Rossby number similarity

Above the surface layer where M−O similarity holds, Kazanski and Monin (1961) suggest that non-dimensionalised profiles of the wind components, potential temperature, and specific humidity can be expressed as universal similarity functions. We write these profiles, or ‘defect laws’, as:

\[
(U - U_b)/u_* = f_1(z/h_b, h_b/L),
\]
\[
(V - V_b)/u_* = f_2(z/h_b, h_b/L),
\]
\[
(\Theta - \Theta_b)/T_* = f_3(z/h_b, h_b/L) \quad \text{and}
\]
\[
(Q - Q_b)/q_* = f_4(z/h_b, h_b/L) \quad \ldots \quad 57
\]

where the subscript \(b \) indicates bulk or characteristic scales for the ABL. Formally Eqn 57 applies in the limit as the surface Rossby number \(\text{Ro} \to \infty \), where \(\text{Ro} = \left| \frac{U_b}{f} \right| \left| \frac{z_0}{h_b} \right| \frac{U_b}{f} \) is the geostrophic wind and \(f \) the Coriolis parameter. This means that Eqn 57 applies to the outer part of the ABL and is independent of the roughness length.

The functions in Eqn 57 could be expanded to include the effects of the ratio of the rotational height \(h_b/f \) to \(h_b \), geostrophic wind shear (baroclinicity), non-stationarity, terrain slope, and other factors (see e.g. Sorbjan 1989; Garratt 1992). However, in a practical sense, it is often difficult or impossible to determine the functional relationships for a large number of independent parameters from field data. In the convective boundary layer if we take \(h_b \) to be \(h \) and \(U_b, V_b, \Theta_b \) and \(Q_b \) to be the mixed-layer averaged values, then there is evidence that the additional vari-

ables probably play a minor role (Brutsaert and Sugita 1991; Garratt 1992). However, in stable conditions the shapes of the profiles of momentum and heat flux are dependent on the time after sunset, baroclinicity, terrain slope, etc. (see Eqns 53 and 54), indicating that under these conditions the form of Eqn 57 may be incomplete for general application.

In the limits as \(z/h \to 0 \) and \(z/z_0 \to \infty \), it is assumed that there is a region of overlap where Eqns 14 to 16 and Eqn 57 are simultaneously valid. Matching these expressions yields a set of equations known as the resistance laws:

\[
\ln (h_b/z_0) - kV_b/u_* = A(h_b/L) \quad \ldots \quad 58
\]
\[
-kV_b/u_* = B(h_b/L) \text{ sign}(f) \quad \ldots \quad 59
\]
\[
\ln (h_b/z_0) + k (\Theta_b - \Theta_0)/T_* = -C(h_b/L) \quad \ldots \quad 60
\]
\[
\ln (h_b/z_0) + k (Q_b - Q_0)/q_* = -D(h_b/L) \quad \ldots \quad 61
\]

where the stability functions \(A, B, C \) and \(D \) ultimately must be determined by experiment. Once \(A, B, C \) and \(D \) are known then Eqns 58 to 61 can be used to evaluate the surface fluxes. (It should be noted that some authors reverse the definitions of \(A \) and \(B \) in Eqns 58 and 59.)

Recently Zilitinkevich (1989) and Byun (1991), following an approach suggested by Long (1974), have extended the logarithmic profiles of Eqns 14 to 16 in height by adding polynomial or power law terms. The coefficients of these terms are evaluated by imposing boundary conditions. These functions are then matched with Eqn 57 and relations for the functional forms of \(A, B, C \) and \(D \) are derived. Derbyshire (1990) has used the model of Nieuwstadt (1984, 1985) to determine \(A \) and \(B \) in stable conditions. Summaries of various authors’ prescriptions for \(A, B \) and \(C \) based on models and observations, including laboratory data, are given by Zilitinkevich (1989) and Byun (1991). Most of the predictions fall within the scatter of the data, which is large near neutral and on the stable side. To date there has been little work done on determining the moisture function \(D \) (see Brutsaert 1982, p. 85). Recent extensions of the theory to non-homogeneous terrain are discussed by Brutsaert and Sugita (1991) and Emeis and Zilitinkevich (1991) and an application of determining ocean winds for marine modelling is given by McIntosh and Hubbert (1992).

Surface inhomogeneities

Clarke and Hess (1974) recognised the importance of surface inhomogeneities even at reasonably homogeneous sites such as at the Wangara Experiment. Recently this problem has received renewed attention because of its importance to parametrising subgrid-scale transport processes.
in numerical modelling. At a height \(l_b \), called the blending height, internal boundary layers created by different isolated obstacles or areas of roughness merge and effective surface properties, e.g., the effective surface roughness for momentum \(z_{0\text{eff}} \), can be defined (Wieringa 1986; Mason 1988; Claussen 1989, 1990, 1991):

\[
\left(l_b / L_h \right) \ln^2 \left(l_b / z_{0\text{eff}} \right) = 2 k^2 \quad \ldots 62
\]

where \(L_h \) is the horizontal length scale of the roughness variations. An alternative relation for \(z_{0\text{eff}} \), based on a different estimate of the gradient of the perturbation velocity, is given by (Claussen 1988, 1990; Beljaars and Taylor 1989; Beljaars and Holtslag 1991; Wood and Mason 1991):

\[
\left(l_d / L_h \right) \ln \left(l_d / z_{0\text{eff}} \right) = c k \quad \ldots 63
\]

where \(c \) is a constant (Claussen 1991) recommends \(c \approx 1.75 \). Sometimes \(l_d \) is called the diffusion height \(l_d \), but sometimes \(l_d \) is called the blending height and is denoted by \(l_b \). In Fig. 20 we illustrate the effect of a heterogeneous surface on the profiles of wind speed and temperature. Below \(l_b \), the profiles are in equilibrium with the local surface properties (indicated by the subscript 1), but above \(l_b \), the profiles are in equilibrium with the areally averaged properties. The differences between local and areally averaged values produces kinks in the profiles and different extrapolated roughness lengths depending on where in the profile the extrapolation begins. Assuming constant heat flux with height and logarithmic profiles a simple estimate of the effective temperature roughness length can be obtained (Beljaars and Holtslag 1991):

\[
\ln \left(l_b / z_{H\text{eff}} \right) = \ln \left(l_b / z_{01} \right) \ln \left(l_b / z_{H1} \right) / \ln \left(l_b / z_{0\text{eff}} \right) \quad \ldots 64
\]

For \(l_b \approx 20 \) m, and the ratio of local roughness lengths \(z_{01} / z_{H1} \approx 10 \), then Eqn 64 leads to a ratio of areally averaged roughness lengths \(z_{0\text{eff}} / z_{H\text{eff}} = O(10^4) \) when \(z_{0\text{eff}} \) is about an order of magnitude larger than \(z_{01} \). Extension of the theory to non-neutral cases has been studied by Wood and Mason (1991), Grant (1991) and Claussen (1991). The effective roughness length for momentum can be estimated from a weighted average relation:

\[
\left(1 / \ln^2 \left(l_b / z_{0\text{eff}} \right) \right) = \sum_i f_i / \ln^2 \left(l_b / z_{0i} \right) \quad \ldots 65
\]

where \(f_i \) is the fractional cover of local roughness length \(z_{0i} \).

Terrain also can play a significant role in determining surface roughness. Recently Grant and Mason (1990) parameterised the total drag by a sum of the shear stress contribution associated with the small-scale roughness elements and form drag created by the terrain:

\[
\ln^2 \left(h_r / z_{0\text{eff}} \right) = k^2 / (0.5 \, D \, h_r / \lambda + k^2 / \ln^2 \left(h_r / 2 z_{01} \right)) \quad \ldots 66
\]

Fig. 20 Schematic diagram of near-neutral wind and potential temperature profiles for terrain with sparsely distributed obstacles that contribute significantly to the areally-averaged surface drag. \(l_b \) is the blending height. The subscript 1 indicates local values (after Beljaars and Holtslag 1991)).

Fig. 21 The variation of \(z_{0\text{eff}} / h_r \), as a function of \(h_r / \lambda \). The open symbols are the results from a second-moment closure model for flow over sinusoidal orography with \(z_{01} = 0.1 \) and 0.3 m. The filled symbols are experimental values for (T) Thompson (1978); (N) Noilhan et al. (1982); (K) Kustas and Brutsaert (1986); (M) Mason (1987); (D) Durand et al. (1987) and (L) present study. The dashed curve represents Eqn 66 for \(z_{01} = 0.5 \) m and \(h_r = 300 \) m and the solid curve for \(z_{01} = 0.3 \) m and \(h_r = 300 \) m (after Grant and Mason 1990)).
where for separated flows over sinusoidal orography $D \approx 0.3$, h_e is the height of the obstacles (trough to peak from a ridge-valley system), and λ the horizontal wavelength of the terrain. A comparison of the predictions from Eqn 65 with observations (Fig. 21) shows general agreement. For $h_e \approx 250$ m and $h_e/\lambda = 0.08$, $z_{eff} \approx 9.0$ m! This value of z_{eff} assumes that the terrain is statistically homogeneous over an area of $O(100$ km2).

Future work

In this review we have touched upon some of the recent advances in our understanding of observations and scaling of the ABL. However there are many areas in which our knowledge is incomplete. Some of these areas are mentioned below:

- There is still no definitive set of experiments determining the fundamental constants of turbulence theory, e.g. von Kármán's constant, Kolmogorov constant, neutral Prandtl number, neutral Schmidt number, the profile constants, etc. The von Kármán constant is related to the Kolmogorov constant and both should be determined in the same experiment by independent means. Are these numbers really constant or do they depend on unknown variables? A definitive set of experiments would have to measure all of the terms in the turbulent kinetic energy equation, including the pressure-velocity correlation term. (Also see the review and discussion by Frenzen and Vogel (1992) that has just appeared.)

- A careful experimental study of free convection and the mean profile relations at large instability ($-z/L > 2$) is still needed.

- The interplay between observation, theory and modelling is vital. In the stable ABL a general framework for a theory is beginning to emerge from the work of Nieuwstadt (1984, 1985), Soriyan (1989), Lenschow et al. (1988), and Derbyshire (1990). Preliminary large-eddy simulations of the stable layer have recently been completed (Mason and Derbyshire 1990). However, the stable boundary layer will continue to be a great challenge because of the importance of terrain slope effects and drainage flow, the presence of internal gravity waves, radiation, baroclinicity, intermittency and unsteadiness. Can parametrisation of the stable intermittent boundary layer help us to parametrise clear-air turbulence for use in forecast models?

- The problems of cloud-topped ABLs and fog have not been discussed in this review, yet they are areas of great importance. These involve the interaction of turbulence and radiation. This interaction is delicately balanced for fog. A simple parametrisation of the height of the cloud-topped boundary layer would be helpful.

- Significant progress has been made in understanding the dry convective boundary layer, but the parametrisation of moist convection in the ABL needs to be better understood.

- The effect of inhomogeneities in surface properties is another area of active research. How complex does the specification of land-surface interaction need to be?

- Most measurements of bulk transfer coefficients over the sea have been performed at moderate wind speeds. More measurements of the fluxes and transfer coefficients at both low and high wind speeds are needed.

- The interaction between turbulence and gravity waves at the top of the ABL can have significant impact on the turbulent statistics in the entrainment region, especially moisture. More study of entrainment dynamics is needed. What is the height of the mixed layer when penetrative convection from below and entrainment from above create a highly convoluted surface?

The standards of research that Reg Clarke set in his ABL experiments and his insatiable curiosity and desire to understand how the atmosphere works continue to provide us with a challenging role model to follow.

Acknowledgments

It is a pleasure to acknowledge the help of Drs Anton Beljaars, Frank Bradley, Chris Fairall, John Garratt, Jörg Hacker and Mark Hibberd in preparing this review.

References

Garratt, J.R. and Hicks, B.B. 1990. Micrometeorological and...
Geernaert, G.L., Davidson, K.L., Larsen, S.E. and Mikkelsen, T.
1988. Wind stress measurements during the Tower Ocean
Wave and Radar Dependence Experiment. J. geophys.
Res., 93, 13,913–23.
Geernaert, G.L. and Plant, W.J. (eds) 1990. Surface Waves and
Fluctures. Vol. 1 – Current Theory. 337 pp.; Vol. 2 – Remot-
on buoyancy, heat and moisture at the air-sea interface at low
Golitsyn, G.S. and Grachov, A.A. 1986. Free convection of
multicomponent media and parameterisation of air-sea
interaction at low winds. Ocean Air Interact., 1, 57–78.
Grant, A.L.M. 1991. Surface drag and turbulence over an in-
layer structure over complex terrain. Q. J R. met. Soc., 116,
159–86.
Hartmann, J. 1990. Airborne Turbulence Measurements in the
School of Earth Sciences, Flinders University, Bedford
Park, S.A.
Hasse, L. 1990. Oceanic micrometeorological field experiments:
American Meteorological Society, Boston, 392 pp.
roll vortices during Arctic cold air outbreaks over open
Hess, G.D., Hicks, B.B. and Yamada, T. 1981. The impact of the
Hess, G.D., Spillane, K.T. and Lorenz, R.S. 1988. Atmos-
pheric vortices in shallow convection. Jnl appl. Met., 27,
305–17.
Hibbard, M.F. 1990. Experimental investigations of turbulence
and dispersion in a laboratory model of the planetary con-
vective boundary layer. SECV Research Fellowship Annual
Hicks, B.B. 1975. A procedure for the formulation of bulk trans-
Hicks, B.B. 1976. Wind profile relationships from the 'Wangara'
Hildebrand, P.H. and Ackerman, B. 1984. Urban effects on the
Högström, U. 1988. Non-dimensional wind and temperature
Holm, T. and Raman, S. 1988. A review and comparative eval-
uation of multilevel boundary layer parameterization for
first-order and turbulent kinetic energy closure schemes.
Holtslag, A.A.M. and Nieuwstadt, F.T.M. 1986. Scaling the
atmospheric boundary layer. Bound. Lay. Met., 36, 201–
209.
ture in the convective boundary layer – new measurements
Joffre, S.M. 1985. The structure of the marine atmospheric
boundary layer. A review from the point of view of diffu-
29, Finnish Meteorological Institute, Helsinki.
Kaimal, J.C. 1988. The Atmospheric Boundary Layer – Its Struc-
ture and Measurement. Indian Institute of Tropical Meteor-
ology, Pune, 115 pp.
Kaimal, J.C. and Wyngaard, J.C. 1990. The Kansas and Min-
Kazanski, A.B. and Monin, A.S. 1961. On the dynamic interac-
tion between the atmosphere and the Earth’s surface. Izv.
Kondo, J. 1975. Air-sea bulk transfer coefficients in diabatic
Kondo, J., Kanechika, O. and Yasuda, N. 1978. Heat and mois-
ture transfers under strong stability in the atmospheric
Kropfli, R.A. and Hildebrand, P.H. 1980. Three-dimensional
wind measurements in the optically clear planetary bound-
ary layer with dual-Doppler radar. Radio Sci., 15, 283–
96.
Kumar, R. and Adrian, R.J. 1986. Higher-order moments in
unsteady turbulent penetrative thermal convection. J. Heat
Kustas, W.P. and Brutsaert, W. 1986. Wind profile constants in
a neutral atmospheric boundary layer over complex terrain.
LeMone, M.A. 1980. The marine boundary layer. In Workshop
on the PBL (J.C. Wyngaard (ed.)). Amer. Met. Soc., Boston,
182–231.
Lenschow, D.H. 1974. Model of the height variation of the tur-
bulence kinetic energy budget in the unstable planetary
Mean-field and second-moment budgets in a baroclinic
The stably stratified boundary layer over the Great Plains I.
Mean and turbulence structure. Bound. Lay. Met., 42, 95–
121.
Lenschow, D.H., Zhang, S.F. and Stankov, B.B. 1988b. The
stably stratified boundary layer over the Great Plains II.
Horizontal variations and spectra. Bound. Lay. Met., 42,
123–35.
Met., 30, 1–9.
Liu, W.T.; Katsaros, K.B. and Businger, J.A. 1979. Bulk para-
meterization of air-sea exchanges of heat and water vapour
including the molecular constraints at the interface. J.
Atmos. Sci., 36, 1722–35.
Long, R.R. 1974. Mean stress and velocities in the neutral baro-
tropic planetary boundary layer. Bound. Lay. Met., 7, 475–
87.
Louis, J.F. 1979. A parametric model of vertical eddy fluxes in
McIntosh, P.C. and Hubbert, G.D. 1992. Ocean winds for mar-
Manins, P.C. 1982. The daytime planetary boundary layer: a
new interpretation of Wangara data. Q. J R. met. Soc., 108,
689–705.
of convective cloud bands over the North Sea. Bound. Lay.
Mason, P.J. 1987. Diurnal variations in flow over a succession
Mason, P.J. 1988. The formation of areally averaged roughness
Mason, P.J. and Derbyshire, S.H. 1990. Large-eddy simulation
of the stably-stratified atmospheric boundary layer. Bound.
Lay. Met., 52, 117–42.
Mellor, G.L. and Yamada, T. 1982. Development of a turbu-
ence closure model for geophysical fluid problems. Rev.
Miller, M.J., Beljaars, A.C.M. and Palmer, T.N. 1992. The sen-
sitivity of the ECMWF model to the parameterization of
evaporation from the tropical oceans. J. Climatol., 5, 418–
34.

