Introduction

This summary, covering the three-month period from January 2006 to March 2006, continues the series reporting on the performances of numerical weather prediction (NWP) models used operationally in the Australian Bureau of Meteorology.

Verified NWP models and their upgrades during the January-March 2006 period

Local models

There have been some minor changes to the Bureau’s global model, Global ASsimulation and Prediction system (GASP) and the two limited area models, LAPS_PT375 and TXLAPS_PT375 during this verification period. However no significant upgrade has been reported.

Overseas models

Products from four global models run by overseas operational NWP centres are received in the Bureau’s National Meteorological and Oceanographic Centre (NMOC) and are verified in this article. For this article ECSP refers to the European Centre for Medium-range Weather Forecasts (ECMWF) system, UKGC to the Unified Model from the UK Met Office, USAVN to Global Forecast System (GFS) from the National Centers for Environmental Prediction (NCEP) and JMAGSM to the global assimilation and forecast model from Japan Meteorological Agency (JMA).

On 1 February 2006 ECMWF announced a major upgrade to their operational deterministic and ensemble forecasting system (EPS). The horizontal spectral resolution of the deterministic model increased from T511 to T799 and the number of model vertical levels increased from 60 to 90 with the model top now at 0.01 hPa. The 4DVAR assimilation model saw corresponding increases both in horizontal and vertical resolutions. The model resolution of individual EPS members increased to T399L62.

There were numerous minor improvements made to other overseas NWP models (see web reference below). Details on the configurations of the assimilation and forecast models are contained in an earlier summary (Lee 2005).

Verification method

A description of the S1 skill-score, as applied in NMOC, can be found in an earlier article (Skinner 1995). All results have been calculated within NMOC Melbourne, where each of the models was verified against its own analyses. From the large number of objective verification results routinely produced, the statistics presented here cover only the mean sea-level pressure (MSLP) and 500 hPa geopotential height fields over the irregular Australian verification area (Miao 2003). It is noted that this particular verification grid has southerly points that are outside the TXLAPS_PT375 domain and, hence, the TXLAPS_PT375 scores are not strictly compatible with those from GASP and LAPS_PT375. Also the results for the 0000 and 1200 UTC base-times have been combined. For the locally run models the verified forecast periods go out to a maximum of 72 hours and for the global models to a maximum of 192 hours.
Review of performance – January to March 2006

Local models (GASP, LAPS, TXLAPS)
The intercomparison of the S1 skill-scores of the MSLP forecasts for the three local models is shown in Fig. 1(a). Figure 1(b) shows similar scores for 500 hPa geopotential height. The relative performance among the three models follows the long-term trend, the coarser-resolution GASP outperforming the finer-resolution limited area models. This result is partly due to longer data cut-off of the GASP assimilation. It is also due to the disadvantage suffered by the limited area models which obtain their initial first guess and boundary conditions from an earlier run of GASP forecasts. Forecasts from earlier runs tend to be poorer than forecasts produced from later runs. One other contributing factor for the better-than-expected scores for GASP is the verification method used here, which disadvantages finer resolution models through the ‘double penalty’ scoring. For example, a location error of a deep low pressure system from a more realistic high resolution forecast is counted once for misplacing the low where the verifying analysis does not have it and twice for not placing it where the verifying analysis does. Care needs to be taken to filter out scales below which a verification method was not intended to measure if models which are run at different resolutions are to be objectively compared.

Global models (GASP, ECSP, UKGC, USAVN, J MAGSM)
The Bureau’s own operational global spectral model, GASP, and the four global models from overseas NWP centres are operationally used by forecasters. The outputs from the models are also postprocessed.
to produce various objective guidance products used by users in and outside of the Bureau. Hence their forecast performance is of great interest to the forecasters and other users. The S1 skill scores for MSLP and 500 hPa geopotential height forecasts are presented in Figs 2(a) and 2(b). Anomaly correlations for the MSLP forecasts are shown in Fig. 3. All the global models are verified using a common 2.5° latitude/longitude grid except USAVN which is verified on a 2.5° latitude/5.0° longitude grid. However this use of coarser grid spacing for USAVN is not thought to have affected the intercomparison.

In this quarter, the JMAGSM forecast model continues to show performance improvement over the USAVN model at shorter lead times. Another notable feature is a small but discernible improvement in the relative skill of UKGC over USAVN. This is a continuation of the past trend which appears to have begun when UKMO implemented the 4DVAR data assimilation scheme in the UKGC model.

References

Web reference:
For ECMWF:
http://www.ecmwf.int/publications/newsletters
http://www.ecmwf.int/products/data/technical/model_id/index.html
For UKMO:
For NCEP:
For JMA:
http://ddb.kishou.go.jp

Fig. 3 Anomaly correlation of MSLP comparison, for different forecast periods, between GASP, ECSP, UKGC, USAVN and JMAGSM (January to March 2006).