Wetter conditions favoured for southern Queensland

Northern Aust Seasonal Rainfall Outlook: probabilities for May to July 2011, issued 19th April 2011

Wetter conditions favoured for southern Queensland

The north Australian outlook for the May to July period shows a moderate to strong shift in the odds favouring a wetter than normal season over parts of southern Queensland.

The pattern of seasonal rainfall odds across northern Australia has been produced using recent Pacific and Indian Ocean temperature patterns. The outlook is a result of cool conditions in the central tropical Pacific Ocean associated with the current La Niña, as well as warm conditions in the Indian Ocean. The effect from the Indian Ocean is dominant in this outlook.

probability of exceeding median rainfall - click on the map for a larger version of the map

The chances of receiving above median rainfall during the May to July period are between 60 and 75% over the southern half of Queensland, with the strongest odds in far southern Queensland (see map). Such odds mean that for every ten years with similar ocean patterns to those currently observed, about six to seven May to July periods would be expected to be wetter than average over these areas, while about three to four years would be drier.

Across the northern half of Queensland and all of the Northern Territory, an average start to the Dry Season is expected, with no strong shift towards wetter or drier conditions.

An expanded set of seasonal rainfall outlook maps and tables, including the probabilities of seasonal rainfall exceeding given totals (e.g. 200 mm), is available on the "Water and the Land" (WATL) part of the Bureau's website.

Outlook confidence is related to how consistently the Pacific and Indian Oceans affect Australian rainfall. During the May to July period, history shows the effect to be moderately consistent through most of the Northern Territory and the southern half of Queensland. Elsewhere the effect is only weakly weakly consistent (see background information).

It should also be noted that May to July across most of northern Australia (particularly areas west of the Great Dividing Ranges) is climatologically very dry.

La Niña conditions have weakened in the tropical Pacific. Computer models surveyed by the Bureau suggest the current La Niña event will persist through the southern hemisphere autumn and return to neutral levels by the southern winter. For routine updates and comprehensive discussion on any developments regarding El Niño and La Niña, please see the ENSO Wrap-Up.

 

Click on the map above for a larger version of the map. Use the reload/refresh button to ensure the latest forecast map is displayed.

 

More information on this outlook is available by contacting the Bureau's Climate Services sections in Queensland and the Northern Territory at the following numbers:

Brisbane -(07) 3239 8660
Darwin -(08) 8920 3813

 

THE NEXT ISSUE OF THE SEASONAL OUTLOOK IS EXPECTED BY 24th May 2011

Corresponding temperature outlook

March 2011 rainfall in historical perspective

January to March 2011 rainfall in historical perspective

 

Background Information

  • The Bureau's seasonal outlooks are general statements about the probability or risk of wetter or drier than average weather over a three-month period. The outlooks are based on the statistics of chance (the odds) taken from Australian rainfall/temperatures and sea surface temperature records for the tropical Pacific and Indian Oceans. They are not, however, categorical predictions about future rainfall, and they are not about rainfall within individual months of the three-month outlook period. The temperature outlooks are for the average maximum and minimum temperatures for the entire three-month outlook period. Information about whether individual days or weeks may be unusually hot or cold, is unavailable.

  • This outlook is a summary. More detail is available from the contact people.

  • Probability outlooks should not be used as if they were categorical forecasts. More on probabilities is contained in the booklet The Seasonal Climate Outlook - What it is and how to use it, available from the National Climate Centre. These outlooks should be used as a tool in risk management and decision making. The benefits accrue from long-term use, say over 10 years. At any given time, the probabilities may seem inaccurate, but taken over several years, the advantages of taking account of the risks should outweigh the disadvantages. For more information on the use of probabilities, farmers could contact their local departments of agriculture or primary industry.

  • Model Consistency and Outlook Confidence: Strong consistency means that tests of the model on historical data show a high correlation between the most likely outlook category (above/below median) and the verifying observation (above/below median). In this situation relatively high confidence can be placed in the outlook probabilities. Low consistency means the historical relationship, and therefore outlook confidence, is weak. In the places and seasons where the outlooks are most skilful, the category of the eventual outcome (above or below median) is consistent with the category favoured in the outlook about 75% of the time. In the least skilful areas, the outlooks perform no better than random chance or guessing. The rainfall outlooks perform best in eastern and northern Australia between July and January, but are less useful in autumn and in the west of the continent. The skill at predicting seasonal maximum temperature peaks in early winter and drops off marginally during the second half of the year. The lowest point in skill occurs in early autumn. The skill at predicting seasonal minimum temperature peaks in late autumn and again in mid-spring. There are also two distinct periods when the skill is lowest - namely late summer and mid-winter. However, it must always be remembered that the outlooks are statements of chance or risk. For example, if you were told there was a 50:50 chance of a horse winning a race but it ran second, the original assessment of a 50:50 chance could still have been correct.

  • The Southern Oscillation Index (SOI) is calculated using the barometric pressure difference between Tahiti and Darwin. The SOI is one indicator of the stage of El Niño or La Niña events in the tropical Pacific Ocean. It is best considered in conjunction with sea-surface temperatures, which form the basis of the outlooks. A moderate to strongly negative SOI (persistently below −10) is usually characteristic of El Niño, which is often associated with below average rainfall over eastern Australia, and a weaker than normal monsoon in the north. A moderate to strongly positive SOI (persistently above +10) is usually characteristic of La Niña, which is often associated with above average rainfall over parts of tropical and eastern Australia, and an earlier than normal start to the northern monsoon season. The Australian impacts of past El Niño events since 1900 are summarized on the Bureau's web site (El Niño - Detailed Australian Analysis), and past La Niña events (La Niña - Detailed Australian Analysis)

Related links

Definitions

Email Alert

    If you would like to subscribe to an email alert for this product please email webclim@bom.gov.au

© Australian Government, Bureau of Meteorology