Last updated:
|
Product Code IDCKGEWWOO
The Madden-Julian Oscillation (MJO) is the major fluctuation in tropical weather on weekly to monthly timescales. The MJO can be characterized as an eastward moving "pulse" of cloud and rainfall near the equator that typically recurs every 30 to 60 days. Read more
|
| *Note: There is missing satellite observations from 16/3/1978 to 31/12/1978. |
The MJO phase diagram illustrates the progression of the MJO through different phases, which generally coincide with locations along the equator around the globe. RMM1 and RMM2 are mathematical methods that combine cloud amount and winds at upper and lower levels of the atmosphere to provide a measure of the strength and location of the MJO. When the index is within the centre circle the MJO is considered weak, meaning it is difficult to discern using the RMM methods. Outside of this circle the index is stronger and will usually move in an anti-clockwise direction as the MJO moves from west to east. For convenience, we define 8 different MJO phases in this diagram.
Download data: RMM Data Postscript: RMM 40 days | RMM 90 days
|
These maps show average weekly rainfall probabilities and expected 850 hPa (approximately 1.5 km above sea level) wind anomalies for each of the 8 MJO phases. Green and blue shading indicates higher than normal rainfall would be expected, while red and orange shading indicates lower than normal rainfall would be expected. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is. The relationship of the MJO with Australian rainfall and winds changes with the season (which can be selected at the top).
Print (PDF): JFM | FMA | MAM | AMJ | MJJ | JJA | JAS | ASO | SON | OND | NDJ | DJF
![]() |
Global maps of outgoing longwave radiation (OLR) highlight regions experiencing more or less cloudiness. The top panel is the total OLR in Watts per square metre (W/m²) and the bottom panel is the anomaly (current minus the 1979-1998 climate average), in W/m². In the bottom panel, negative values (blue shading) represent above normal cloudiness while positive values (brown shading) represent below normal cloudiness.
Postscript: 1 day | 3 days | 7 days | 3 months | 6 months | 1 year
Click on the boxes to obtain a timeseries of cloudiness for that region.
The graphs linked to this map show the OLRs for the different regions within the Darwin RSMC area. The horizontal dashed line represents what is normal for that time of year (based on the 1979 to 1998 period). The coloured curve is the 3-day moving average OLR in W/m². Below normal OLR indicates cloudier than normal conditions in this particular area, and is shown in blue shading. Above normal OLR indicates less cloudy conditions and is shown in yellow shading.
Postscript: Coral Sea Dateline Fiji Guam & Marianas Indochina Malyasia & Indonesia Micronesia Nauru & Tuvalu New Guinea Northern Australia Philippines Solomon Island Southern India & Sri Lanka Vanuatu
|
|
|
|
|
Time-longitude plots of daily averaged OLR anomalies (left) and 850 hPa (approximately 1.5 km above sea level) westerly wind anomalies (right) are useful for indicating the movement of the MJO.
The vertical axis represents time with the most distant past on the top and becoming more recent as you move down the chart. The Horizontal axis represents longitude.
Eastward movement of a strong MJO event would be seen as a diagonal line of violet (downward from left to right) in the OLR diagram, and a corresponding diagonal line of purple in the wind diagram. These diagonal lines would most likely fall between 60°E and 150°E and they would be repeated nearly every 1 to 2 months.
ACKNOWLEDGEMENT: Interpolated OLR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site.
Please email Helpdesk.climate@bom.gov.au for more information.