

Tropical Cyclone Kenanga

14 - 17 December 2018

Joe Courtney, Severe Weather Environmental Prediction Services 9 September 2022

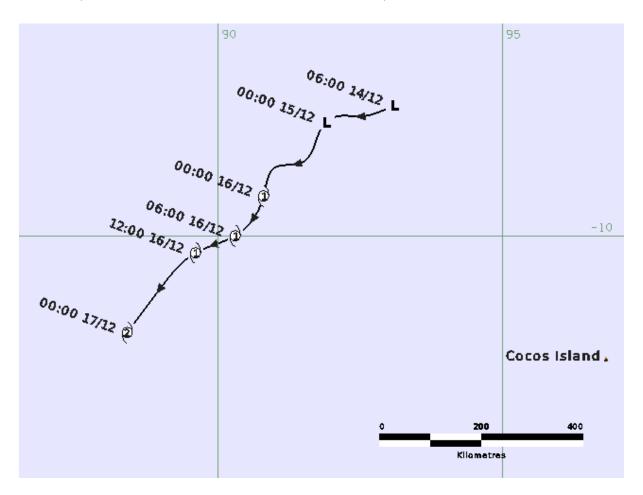
Contact details:

Tropical Cyclone Team Lead Severe Weather Environmental Prediction Services Bureau of Meteorology PO Box 1370, West Perth WA 6872 Email: tcwc@bom.gov.au

© Commonwealth of Australia 2022

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Bureau of Meteorology. Refer to www.bom.gov.au/other/copyright.shtml for further information.

Table of Contents


1. Summary	2
2. Meteorological Description	3
2.1 Intensity analysis	3
2.2 Structure	3
2.3 Motion	3
3. Impact	7
4. Observations	8
5. Forecast Performance	9
6. Appendix: List of abbreviations	10

1. Summary

A tropical low formed on 14 December in the Indian Ocean northwest of Cocos Islands and north of the Australian region (10°S). It was named Kenanga on 15 December by Indonesia's Meteorological agency Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). It tracked to the southwest briefly passing into the Australian area of responsibility as a category one tropical cyclone on 16 December before moving west of 90°E and into La Reunion's area of responsibility. It intensified into a severe tropical cyclone as it continued to track to the southwest over open waters in the Indian Ocean.

There were no known impacts from the cyclone.

Figure 1. Best track of Tropical Cyclone Kenanga, 14–17 December 2016 (times in UTC; UTC=AWST - 8 hours).

2. Meteorological Description

2.1 Intensity analysis

A tropical low formed on 14 December in the Indian Ocean west of Java north of the Australian region. A strong monsoonal inflow assisted in its development although this was offset by moderate to strong easterly wind shear. It was named Kenanga on 15 December by BMKG Indonesia as it moved to the southwest. ASCAT passes during 15 December indicated gales to the northeast and to the south.

Deep convection became more organised during 16 December as the wind shear reduced allowing further intensification. It briefly passed into the Australian area of responsibility as a category one tropical cyclone on 16 December before moving west of 90°E and into La Reunion's area of responsibility. It intensified into a severe tropical cyclone as it continued to track to the southwest over open waters in the Indian Ocean.

2.2 Structure

Gales commenced northeast of the centre around 0600 UTC 15 December and extended to the southeast quadrant at 1200 UTC and to remaining quadrants at 0000 UTC 16 December. The gale radius extended to 80 nm (150 km) northeast of the centre and less in other quadrants. From late on 16 December the gale radius increased in the southeast quadrant as the system accelerated to the southwest.

The radius of maximum winds was initially 30 nm (55 km) as gales commenced but reduced to 15 nm (18 km) when it reached category 2 intensity overnight from 16 to 17 December.

Refer to Table 1 for wind radii estimates.

2.3 Motion

The low was initially slow moving but was steered to the southwest as it passed through the Australian area of responsibility on 16 December.

TABLE 1. Best track summary for Tropical Cyclone Kenanga. Refer to the Australian Tropical Cyclone database for complete listing of parameters and refer to La Reunion for subsequent track details.

Note: UTC is AWST – 8 hours.

^{*}Not at tropical cyclone intensity using Australian definition as gales in two or less quadrants

Year	Month	Day	Hour	Pos.	Pos.	Pos.	Max Wind	Max	Cent.	Rad. of gales	Rad. of storm	RMW
			UTC	Lat.	Long.	Acc.	10min	gust	Press.	(NE/SE/	(NE/SE/	nm
				S	E	nm	kn	kn	hPa	SW/NW)	SW/NW)	
2018	12	14	0600	7.7	93.1	30	25	45	1002	0/0/0/0	0/0/0/0	-
2018	12	14	1200	7.9	92.5	30	30	45	1000	0/0/0/0	0/0/0/0	-
2018	12	14	1800	7.9	92.1	25	30	45	1000	0/0/0/0	0/0/0/0	-
2018	12	15	0000	8.0	91.9	20	30	45	1000	0/0/0/0	0/0/0/0	-
2018	12	15	0600	8.4	91.7	20	35*	45	999	60/0/0/0	0/0/0/0	-
2018	12	15	1200	8.7	91.5	25	35*	50	999	80/40/0/0	0/0/0/0	-
2018	12	15	1800	8.8	91.0	25	35	50	998	80/40/40/0	0/0/0/0	-
2018	12	16	0000	9.3	90.8	20	40	55	996	80/60/40/70	0/0/0/0	30
2018	12	16	0600	10.0	90.3	20	40	55	995	80/70/60/70	0/0/0/0	30
2018	12	16	1200	10.3	89.6	20	45	65	994	60/80/60/60	0/0/0/0	25
2018	12	16	1800	10.9	89.0	25	50	70	992	60/100/70/60	0/25/0/0	15
2018	12	17	0000	11.7	88.4	25	50	70	992	60/120/80/60	25/25/25/25	15

Figure 2. Plot of intensity estimates for Tropical Cyclone Kenanga.

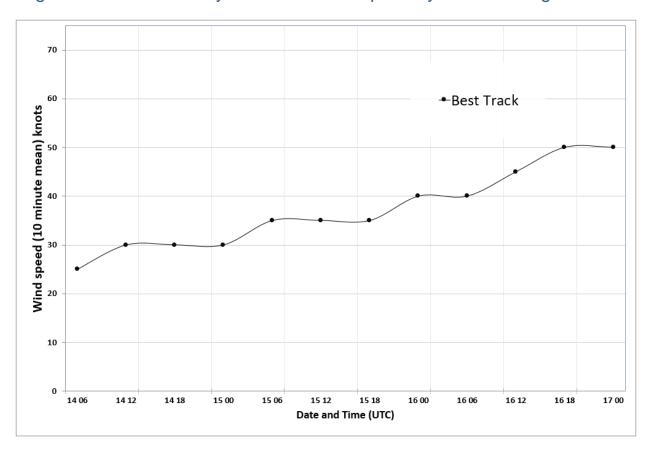
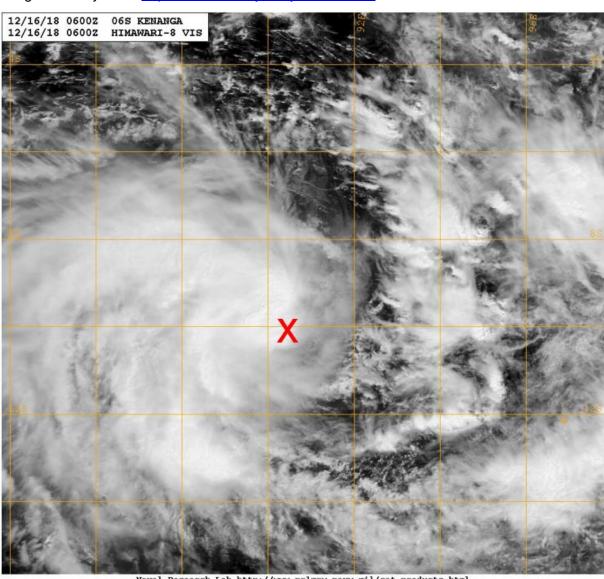



Figure 3. Visible image at 0600 UTC 16 December 2018. The centre is marked with an 'x' just inside the Australian area of responsibility.

Image courtesy NRL: https://www.nrlmry.navy.mil/TC.html

3. Impact

There were no known impacts from Tropical Cyclone Kenanga.

4. Observations

There were no known surface observations associated with Tropical Cyclone Kenanga as it passed through the Australian region.

5. Forecast Performance

There were no tropical cyclone products issued by the Bureau of Meteorology. Ocean wind warnings were issued by BMKG Indonesia and La Reunion for this event.

6. Appendix: List of abbreviations

ADT	Advanced Dvorak Technique	km/h	kilometres per hour	
ACST	Australian Central Standard Time	kn	knot	
AEST	Australian Eastern Standard Time	LLCC	low level cloud centre	
AMSR2	Advanced Microwave Scanning	MET	Model Expected T-number	
ASCAT	Radiometer Advanced Scatterometer	METOP	Meteorological Operational	
ATMS	Advanced Technology Microwave Sounder	MJO	Satellite Madden-Julian Oscillation	
AWS	automatic weather station	mm	millimetres	
AWST	Australian Western Standard Time	MSLP	mean sea level pressure	
С	Celsius	nm	nautical mile	
CI	Current intensity	NOAA	National Oceanic and	
CIMSS	Cooperative Institute for Meteorological	NRL	Atmospheric Administration Navy Research Lab (USA)	
CIRA	Satellite Studies (USA) Cooperative Institute for Research in the	PAT	Pattern T-number	
EIR	Atmosphere (USA) Enhanced InfraRed	RH	relative humidity	
ERC	eyewall replacement cycle	RMW	radius of maximum winds	
FNMOC	Fleet Numerical Meteorology and	RSMC	Regional Specialised	
FT	Oceanography Centre (USA) Final T-number	SAR	Meteorological Centre Synthetic Aperture Radar	
GCOM	Global Change Observation Mission	SATCON	satellite Consensus	
GHz	Gigahertz	SMAP	Soil Moisture Active Passive	
GMI	Global Precipitation Measurement	SMOS	Soil Moisture and Ocean Salinity	
h	Microwave Imager hour	SSMIS	Special Sensor Microwave	
hPa	hectopascal	TC	Imager/Sounder Tropical Cyclone	
HSCAT	Hai Yang 2 Scatterometer (HY-2B, HY-2C)	TCWC	Tropical Cyclone Warning	
km	kilometres	UTC	Centre Universal Time Co-ordinated	