Monthly Data Report - August 2014

Pacific Sea Level Monitoring Project
Table of Contents

List of Tables ... iv
List of Figures ... iv

Executive Summary .. 1
Introduction .. 2
Sea Level and Climate ... 4
August SEAFRAME Data ... 5
 Monthly Sea Level and Environmental Data .. 5
 Monthly Means and Anomalies .. 7
 Overall Rate of Movement in Sea Level .. 8
 Instrument Performance ... 9

SEAFRAME Stations .. 10
 Observation Network Upgrade Project ... 11
 Tide Prediction Extension Project .. 11

Further Information .. 12
 Online Resources ... 12
 Acknowledgement ... 12

Appendix 1: SEAFRAME Data Figures .. 13
List of Tables
Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through August, 2014. ... 8
Table 2. Rates of sea level data return... 9
Table 3. Schedule of SEAFRAME station equipment upgrades.. 11

List of Figures
Figure 1. Pacific Sea Level Monitoring Network of SEAFRAME stations.. 3
Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station.. 10
Figure 3. Sea level observations during August 2014 .. 14
Figure 4. Residual sea levels during August 2014 ... 15
Figure 5. Residual sea levels adjusted for barometric pressure during August 2014 .. 16
Figure 6. Wind speeds during August 2014 ... 17
Figure 7. Wind gusts during August 2014 ... 18
Figure 8. Incident winds during August 2014 ... 19
Figure 9. Air temperatures during August 2014 ... 20
Figure 10. Water temperatures during August 2014 .. 21
Figure 11. Barometric pressures during August 2014 .. 22
Figure 12. Comparison of August 2014 data with long term August values .. 23
Figure 13. Monthly mean sea levels to August 2014 .. 24
Figure 14. Monthly mean barometric pressures to August 2014.. 25
Figure 15. Monthly mean water temperatures to August 2014 .. 26
Figure 16. Monthly mean air temperatures to August 2014 .. 27
Figure 17. Monthly sea level anomalies to August 2014 .. 28
Figure 18. Monthly barometric pressure anomalies to August 2014 .. 29
Figure 19. Monthly water temperature anomalies to August 2014 .. 30
Figure 20. Monthly air temperature anomalies to August 2014 .. 31
Figure 21. Sea level data return. .. 32
Executive Summary

This summary, and the overview that follows, are intended to provide a synopsis of the recent month’s observations in addition to longer term variations over the life of the project to date.

August 2014

- The SEAFRAME network continued to collect high quality sea level and associated meteorological information for monitoring climate variability and climate change.

- The overall rate of sea level data return for August was 84.0%, a lower than usual rate due to a critical hardware fault at Nauru and power supply problems at PNG and Fiji. A repair visit to Nauru is scheduled for September.

- Monthly sea levels were 15 cm lower than normal at FSM, and between 5 and 10 cm lower than normal at Marshall Islands, Vanuatu, Fiji and Tonga. Sea levels at Kiribati were 6 cm higher than normal.

- Monthly barometric pressures at Vanuatu, Fiji and Tonga rose to their highest levels since the 1997/1998 El Niño, at 2 hPa higher than is normally observed at this time of year.
Introduction

Welcome to the August 2014 Monthly Data Report for the Pacific Sea Level Monitoring Project (PSLMP). The report details the month by month operation of the SEAFRAME monitoring stations in the Pacific, including operational problems with the network or with satellite communications, the occurrence of abnormal sea level events and the interpretation of sea level fluctuations in the context of related astronomical tide, weather and climate variations.

The PSLMP continues the work of the South Pacific Sea Level and Climate Monitoring Project (SPSLCMP) under a wider Climate and Oceans Support Program in the Pacific (COSPPac) initiative. The SPSLCMP was originally developed as an Australian response to concerns raised by the member countries of the South Pacific Forum over the potential impacts of global warming on climate and sea levels in the Pacific with the principal objective of 'the provision of an accurate long term record of sea level in the South Pacific for partner countries and the international scientific community which enables them to respond to and manage related impacts'.

The project’s sea level monitoring network consists of 12 SEAFRAME stations providing wide coverage across the Pacific Islands Forum region (Figure 1). The SEAFRAME stations not only measure sea level, but also observe a number of “ancillary” variables - air and water temperatures, wind speed, wind direction and atmospheric pressure.

An associated geodetic measurement program, implemented by Geosciences Australia, supports levelling surveys to first order, to determine shifts in the vertical of the sea level sensors due to local land movement, as well as continuous Global Positioning System (CGPS) stations to determine the vertical movement of the land with respect to the International Terrestrial Reference Frame.

Observations collected by the sea level monitoring network are routinely processed into a range of quality-controlled data products. The monthly data report is the primary source of up-to-date information relating to these data products.
Figure 1. Pacific Sea Level Monitoring Network of SEAFRAME stations.
Astronomical tides and weather conditions are largely responsible for daily perturbations in sea level, but over monthly, seasonal and longer timescales sea levels in the tropical Pacific are largely influenced by fluctuations in climate and ocean heat content across the Pacific.

The El Niño – Southern Oscillation climate cycle plays a key role in sea level variability. During El Niño sea levels are generally lower than normal across the western equatorial Pacific, as measured by the project’s sea level network, in response to weaker than normal easterly Trade Winds, cooler than normal ocean temperatures and higher than normal barometric pressures in this region. On the other hand during La Niña the easterly Trade Winds are typically stronger than normal, ocean temperatures are warmer than normal and barometric pressures are lower than normal across the western Pacific, which often results in higher than normal sea levels at many of the project stations.

The sea level stations at PNG, Solomon Islands, Tuvalu and Samoa lie along a zone of convergent winds, known as the South Pacific Convergence Zone. Sea levels at these stations may become higher or lower than normal depending on the strength of these convergent winds or the shifting position of the convergence zone relative to its climatological mean. The sea level stations at Nauru and Kiribati lie very close to the equator and can both be influenced by sea level signals propagating along the equatorial waveguide.

A summary of recent and past climate conditions across the equatorial Pacific is provided by the Bureau of Meteorology in its monitoring of the El Niño – Southern Oscillation cycle at http://www.bom.gov.au/climate/enso/

Further climate information for Pacific Island countries is provided by the Climate and Ocean Monitoring and Prediction (COMP) Project under the Climate and Oceans Support Program in the Pacific (COSPPac).
The observed sea levels (Figure 3) are dominated by the daily oscillations of the tide. In most cases, the tide rises and falls twice per day (semi-diurnal), but at PNG and the Solomon Islands the tide tends to have a single high and low per day (diurnal). Where the tides follow a semi-diurnal pattern the greatest tidal variations are called spring tides, which tend to occur around the time of the full and new moons. There was a full moon on the 10th of August and a new moon on the 25th of August.

Gaps in the data are the result of instrumental errors or data retrieval problems and are discussed under Instrument Performance.

The residuals (Figure 4) are the differences between the observed sea levels and the astronomical tidal predictions. They highlight non-tidal sea level fluctuations, such as those due to the effects of weather or tsunamis. Tropical cyclones can produce storm surges where the combination of low barometric pressure and strong winds raise sea levels well above the predicted astronomical tides for a period of a day or more.

The non-tidal sea level fluctuations can be amplified or sustained by the shape of the harbour in which the gauge is located. Some of the SEAFRAME stations are located in harbours that exhibit ‘sloshing’ under certain conditions (a phenomenon referred to as a seiche), such as at PNG when the wind suddenly changes strength or direction, at FSM during smaller neap tides and at Nauru during strong westerly winds.

The sea level residuals at all stations, to some degree, exhibit semi-diurnal or diurnal fluctuations, which last a few days or weeks and then disappear. If these fluctuations were to persist they would form part of the astronomical tide prediction and thus not appear as residuals. Consequently semi-diurnal and diurnal residual fluctuations will always be transient in nature.

The barometrically corrected residuals (Figure 5) have had the effect of atmospheric pressure fluctuations removed from the sea level residuals of Figure 4. The rule of thumb for the ‘inverse barometer effect’ is that a 1-hPa fall in the barometer, if sustained over a day or more, produces a 1-cm rise in the local sea level (within the area beneath the low pressure system).

The winds, temperatures and barometric pressures are plotted in Figure 6 through Figure 11. The incident winds in Figure 8 follow the meteorological convention, that is, they point in the direction the wind is coming from. For example, the winds at Tuvalu prevailed from the southeast for most of the month.

Air and water temperatures (Figure 9 and Figure 10) are plotted using the same vertical scale for the purpose of comparison. The air temperatures are seen to fluctuate over a much wider range than the water temperatures. At some sites (e.g. Marshall Islands) the water temperature shows almost no variation, although the air temperature varies by several degrees between night and day. At Nauru a
twice-daily fluctuation in water temperature is related to interactions between tides and terrestrial (land-based) water discharging into the wharf area. Although no data was collected from Nauru during August, the water temperature fluctuations there are usually more pronounced during the larger spring tides.

Barometric pressures (Figure 11) tend to fluctuate by around 3 hPa twice-daily at all stations as a result of atmospheric tides, which are largest in the tropical regions and reduce to near zero toward the poles. The longer-term barometric pressure fluctuations that occur over periods of days to weeks are due to passing weather systems. These fluctuations tend to be larger at sites farther away from the equator such as Cook Islands and Tonga.

The monthly sea level and ancillary data are put into perspective by Figure 12. In this figure, if an open circle falls above (below) a solid dot, a new maximum (minimum) for the particular month has been set. The data sets only include Pacific Sea Level Monitoring Project data, which have been collected since October 1992 when the first station was installed at Fiji. The data from Federated States of Micronesia (FSM) has only been collected since December 2001.

During the past month record-high August sea levels were observed at Kiribati (3.019 m) and Samoa (1.652 m). A record-high August air temperature of 33.2 ºC was observed at Marshall Islands and a record-low August air temperature of 15.4 ºC was observed at Tonga.

Monthly Means and Anomalies

Figure 13 through Figure 16 show the monthly means, or simple arithmetic averages, for sea level, barometric pressure, water temperature and air temperature. Averaging over a month removes tidal and daily fluctuations, which helps reveal the seasonal, annual and longer-period variations in the records. Tuvalu, for example, normally experiences an annual sea level cycle of about 0.2 metres, reaching a peak around February or March. One effect of the El Niño of 1997-1998 was very low sea levels which disrupted the annual sea level cycle at many of the SEAFRAME stations. The August 2014 monthly mean barometric pressures at Vanuatu and Tonga were their highest since the 1997/1998 El Niño and at Fiji the highest since the start of the record in 1992.

Figure 17 through Figure 20 show the monthly mean sea level, barometric pressure, air temperature and water temperature anomalies. The sea level anomalies are the monthly-averaged residuals after tides, annual and semi-annual seasonal cycles and linear slope have been removed, by way of a harmonic tidal analysis of the complete record. The annual sea level cycle at Tuvalu (which has the largest consistent annual cycle) is quite noticeable in Figure 13 but less apparent in Figure 17. By removing the seasonal cycles, the anomalies help to bring out irregular features, such as lower than normal sea levels across the region during the 1997/98 El Niño.

Figure 17 shows monthly sea levels during August 2014 were lower than normal at Marshall Islands (-6 cm), FSM (-15 cm), Vanuatu (-5 cm), Fiji (-9 cm), Tonga (-5 cm) and, to a lesser extent, Cook Islands (-3 cm). Sea levels were slightly higher than normal at Kiribati (+6 cm) and Samoa (+3 cm).

The anomalies of barometric pressure, water and air temperature are determined in the same manner as the sea level anomalies, except the linear slope is not calculated.

The barometric pressure anomalies (Figure 18) show substantially higher than normal barometric pressures were observed at SEAFRAME stations during the 1997-1998 El Niño. During August 2014 barometric pressures were slightly higher than normal at Vanuatu (+1.5 hPa), Fiji (+2.0 hPa) and Tonga (+2.3 hPa).

Monthly water temperatures during August 2014 were warmer than usual at Marshall Islands (+1.0 ºC), Kiribati (+0.7 ºC) and Samoa (+0.6 ºC) and cooler than normal at PNG (-0.4 ºC), Fiji (-0.4 ºC) and Tonga (-0.5 ºC).

Monthly air temperatures were warmer than normal at Marshall Islands (+0.9 ºC), PNG (+0.7 ºC), Solomon Islands (+0.5 ºC), Kiribati (+0.9 ºC), Samoa (+0.4 ºC) and Vanuatu (+0.9 ºC), but cooler than normal at Tonga (-0.7 ºC) and Cook Islands (-0.6 ºC). Over the duration of the record the air temperature anomalies generally (although not always) follow the water temperature anomalies, which is an indication of the large influence the ocean has upon the climate of the Pacific Islands.
Overall Rate of Movement in Sea Level

Table 1 shows the overall rate of movement in sea level at individual Pacific stations based on the data so far collected at those sites. For many of the sites, the underlying data sets are around twenty years in length.

The overall rates of movement are updated every month by calculating the linear slope during the tidal analysis of all the data available at individual stations.

Please exercise caution in interpreting the overall rates of movement of sea level – the records are too short to be inferring long-term trends.

Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through August, 2014.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date of first data</th>
<th>Rate (mm/yr)</th>
<th>Change in rate from previous month (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall Is.</td>
<td>7°6'21.7"N</td>
<td>171°22'22.1"E</td>
<td>May 1993</td>
<td>5.7</td>
<td>-0.1</td>
</tr>
<tr>
<td>FSM</td>
<td>6°58'49.9"N</td>
<td>158°12'0.8"E</td>
<td>Dec 2001</td>
<td>12.7</td>
<td>-0.5</td>
</tr>
<tr>
<td>PNG</td>
<td>2°2'31.5"S</td>
<td>147°22'25.6"E</td>
<td>Sep 1994</td>
<td>7.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>9°25'44.1"S</td>
<td>159°57'19.3"E</td>
<td>Jul 1994</td>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Kiribati</td>
<td>1°21'54.2"N</td>
<td>172°55'58.8"E</td>
<td>Dec 1992</td>
<td>3.9</td>
<td>+0.1</td>
</tr>
<tr>
<td>Nauru</td>
<td>0°31'45.9"S</td>
<td>166°54'36.2"E</td>
<td>Jul 1993</td>
<td>5.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>8°30'8.9"S</td>
<td>179°11'42.6"E</td>
<td>Mar 1993</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Samoa</td>
<td>13°49'36.4"S</td>
<td>171°45'40.7"W</td>
<td>Feb 1993</td>
<td>7.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>17°45'19.2"S</td>
<td>168°18'27.7"E</td>
<td>Jan 1993</td>
<td>3.6</td>
<td>-0.1</td>
</tr>
<tr>
<td>Fiji</td>
<td>17°36'17.7"S</td>
<td>177°26'17.7"E</td>
<td>Oct 1992</td>
<td>5.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Tonga</td>
<td>21°8'12.5"S</td>
<td>175°10'50.5"W</td>
<td>Jan 1993</td>
<td>8.7</td>
<td>-0.1</td>
</tr>
<tr>
<td>Cook Is</td>
<td>21°12'17.1"S</td>
<td>159°47'5.2"W</td>
<td>Feb 1993</td>
<td>4.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Instrument Performance

In Figure 21, which shows sea level data return, the columns represent the percentage of quality-controlled data returned from the gauge each month.

Sea level data return from the network during August 2014 was lower than usual, at 84.0% (Table 2). The SEAFRAME at Nauru remained out of service throughout August due to a hardware fault that is scheduled to be repaired in September. The SEAFRAME at PNG suffered power supply problems and only managed to collect 5 days of data through August, whilst power supply problems were also to blame for the loss of 2 days of data from Fiji.

No problems were encountered with the ancillary sensors during August.

Table 2. Rates of sea level data return.

<table>
<thead>
<tr>
<th>Location</th>
<th>Installation Date</th>
<th>Data Return Since Installation (%)</th>
<th>Data Return in August 2014 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook Is</td>
<td>Feb 1993</td>
<td>96.9</td>
<td>100</td>
</tr>
<tr>
<td>Tonga</td>
<td>Jan 1993</td>
<td>98.5</td>
<td>100</td>
</tr>
<tr>
<td>Fiji</td>
<td>Oct 1992</td>
<td>98.8</td>
<td>93</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>Jan 1993</td>
<td>95.3</td>
<td>100</td>
</tr>
<tr>
<td>Samoa</td>
<td>Feb 1993</td>
<td>96.6</td>
<td>100</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>Mar 1993</td>
<td>96.7</td>
<td>100</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Dec 1992</td>
<td>94.3</td>
<td>100</td>
</tr>
<tr>
<td>Nauru</td>
<td>Jul 1993</td>
<td>92.3</td>
<td>0</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>Jul 1994</td>
<td>98.6</td>
<td>100</td>
</tr>
<tr>
<td>PNG</td>
<td>Sep 1994</td>
<td>93.5</td>
<td>14.9</td>
</tr>
<tr>
<td>FSM</td>
<td>Dec 2001</td>
<td>97.1</td>
<td>100</td>
</tr>
<tr>
<td>Marshall Is.</td>
<td>May 1993</td>
<td>98.2</td>
<td>100</td>
</tr>
<tr>
<td>Network Average</td>
<td></td>
<td>96.4</td>
<td>84.0</td>
</tr>
</tbody>
</table>
Standard SEAFRAME stations now employ a TELMET (previously SUTRON) programmable data logger, water level gauges and other sensors. The data logger and associated electronics are normally housed in fibreglass huts. A sketch of a typical SEAFRAME station is shown in Figure 2.

Water level sensors include:

1. Primary water level using a Bartex 'AQUATRAK' acoustic-in-air sensor,
2. Secondary water level (or backup) using a Druck pressure transducer mounted close to the seabed, and
3. Tertiary water level using a Vega-puls62 radar sensor mounted above the water.

Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station.
Observation Network Upgrade Project
The Observation Network Upgrade Project (ONUP) upgraded all Pacific SEAFRAME stations from March 2011 to December 2013 with modernised TELMET data loggers, real-time satellite communications and additional radar-type water level sensors. The dates of installation of the original SUTRON loggers and dates of the station upgrades are given in Table 3.

Table 3. Schedule of SEAFRAME station equipment upgrades.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>SUTRON Installation Date</th>
<th>TELMET Upgrade Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook Is</td>
<td>21°12'17.1"S</td>
<td>159°47'5.2"W</td>
<td>Feb 1993</td>
<td>Oct 2012</td>
</tr>
<tr>
<td>Tonga</td>
<td>21°8'12.5"S</td>
<td>175°10'50.5"W</td>
<td>Jan 1993</td>
<td>Mar 2011</td>
</tr>
<tr>
<td>Fiji</td>
<td>17°36'17.7"S</td>
<td>177°26'17.7"E</td>
<td>Oct 1992</td>
<td>Jun 2011</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>17°45'19.2"S</td>
<td>168°18'27.7"E</td>
<td>Jan 1993</td>
<td>May 2012</td>
</tr>
<tr>
<td>Samoa</td>
<td>13°49'36.4"S</td>
<td>171°45'40.7"W</td>
<td>Feb 1993</td>
<td>Aug 2011</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>8°30'8.9"S</td>
<td>179°11'42.6"E</td>
<td>Mar 1993</td>
<td>Nov 2013</td>
</tr>
<tr>
<td>Kiribati</td>
<td>1°21'54.2"N</td>
<td>172°55'58.8"E</td>
<td>Dec 1992</td>
<td>Oct 2011</td>
</tr>
<tr>
<td>Nauru</td>
<td>0°31'45.9"S</td>
<td>166°54'36.2"E</td>
<td>Jul 1993</td>
<td>Jul 2013</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>9°25'44.1"S</td>
<td>159°57'19.3"E</td>
<td>Jul 1994</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>PNG</td>
<td>2°2'31.5"S</td>
<td>147°22'25.6"E</td>
<td>Sep 1994</td>
<td>Aug 2012</td>
</tr>
<tr>
<td>FSM</td>
<td>6°58'49.9"N</td>
<td>158°12'0.8"E</td>
<td>Dec 2001</td>
<td>Apr 2013</td>
</tr>
<tr>
<td>Marshall Is.</td>
<td>7°6'21.7"N</td>
<td>171°22'22.1"E</td>
<td>May 1993</td>
<td>Dec 2012</td>
</tr>
</tbody>
</table>

Tide Prediction Extension Project
A tide prediction extension project is aimed at extending the network of locations at which accurate tide predictions are available. Activities include the deployment of portable tide gauges in strategic locations, with the intention of observing sea levels for a sufficient length of time, ideally 1 year, to allow a thorough analysis of astronomical tides.

A portable tide gauge was installed at Neiafu, in the Vava‘u group of islands in Tonga, in September 2013 and efforts to link the sea-level data from the portable gauge to a local land reference via levelling survey were also made.
Online Resources

Acknowledgement

The Monthly Data Report is prepared for Australian Aid (formerly AusAID) by the Bureau of Meteorology under the Pacific Sea Level Monitoring (PSLM) Project, Climate and Oceans Support Program in the Pacific (COSPPac).

Further enquiries about the Monthly Data Report may be made to:

Bureau of Meteorology
PO Box 421
Kent Town SA 5067
Tel: (+618) (08) 8366 2730
Email: ntc@bom.gov.au

Please also note the following:

While care has been taken in the collection, analysis, and compilation of the data, it is supplied on the condition that the Commonwealth of Australia shall not be liable for any loss or injury whatsoever arising from the use of the data. Copyright for material contained in this document is held by the Commonwealth of Australia.
Appendix 1: SEAFRAME Data Figures
Figure 3. Sea level observations during August 2014.
Figure 4. Residual sea levels during August 2014.
Figure 5. Residual sea levels adjusted for barometric pressure during August 2014.
Figure 6. Wind speeds during August 2014.
Figure 7. Wind gusts during August 2014.
Figure 8. Incident winds during August 2014
Figure 9. Air temperatures during August 2014.
Figure 10. Water temperatures during August 2014.
Figure 11. Barometric pressures during August 2014.
COMPARISON OF AUGUST 2014 MAX, MIN AND MEAN WITH LONG-TERM AUGUST VALUES

Figure 12. Comparison of August 2014 data with long term August values.
Figure 13. Monthly mean sea levels to August 2014.
MONTHLY MEAN BAROMETRIC PRESSURES
THROUGH AUGUST 2014 (hPa)

Figure 14. Monthly mean barometric pressures to August 2014.
MONTHLY MEAN WATER TEMPERATURES THROUGH AUGUST 2014 (°C)

Figure 15. Monthly mean water temperatures to August 2014.
Figure 16. Monthly mean air temperatures to August 2014.
Figure 17. Monthly sea level anomalies to August 2014.
BAROMETRIC PRESSURE ANOMALIES
THROUGH AUGUST 2014 (hPa)

Figure 18. Monthly barometric pressure anomalies to August 2014.
Figure 19. Monthly water temperature anomalies to August 2014.
AIR TEMPERATURE ANOMALIES
THROUGH AUGUST 2014 (°C)

Figure 20. Monthly air temperature anomalies to August 2014.
Figure 21. Sea level data return.