Table of Contents

List of Tables .. iv
List of Figures ... iv
Executive Summary .. 1
Introduction .. 2
Sea Level and Climate ... 4
May SEAFRAME Data .. 5
 Monthly Sea Level and Environmental Data .. 5
 Monthly Means and Anomalies .. 7
 Overall Rate of Movement in Sea Level ... 8
 Instrument Performance .. 9
SEAFRAME Stations .. 10
Tide Prediction Extension Project .. 11
Further Information ... 12
 Online Resources ... 12
 Acknowledgement ... 12
Appendix 1: SEAFRAME Data Figures ... 13
List of Tables

Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through May 2019. ... 8
Table 2. Rates of sea level data return.. 9

List of Figures

Figure 1. Network of SEAFRAME sea level monitoring stations in the Pacific. .. 3
Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station... 10
Figure 3. Sea level observations during May 2019.. 14
Figure 4. Residual sea levels during May 2019.. 15
Figure 5. Residual sea levels adjusted for barometric pressure during May 2019. .. 16
Figure 6. Wind speeds during May 2019.. 17
Figure 7. Wind gusts during May 2019.. 18
Figure 8. Incident winds during May 2019.. 19
Figure 9. Air temperatures during May 2019.. 20
Figure 10. Water temperatures during May 2019.. 21
Figure 11. Barometric pressures during May 2019.. 22
Figure 12. Comparison of May 2019 data with long term May values. .. 23
Figure 13. Monthly mean sea levels to May 2019.. 24
Figure 14. Monthly mean barometric pressures to May 2019.. 25
Figure 15. Monthly mean water temperatures to May 2019.. 26
Figure 16. Monthly mean air temperatures to May 2019.. 27
Figure 17. Monthly sea level anomalies to May 2019.. 28
Figure 18. Monthly barometric pressure anomalies to May 2019.. 29
Figure 19. Monthly water temperature anomalies to May 2019.. 30
Figure 20. Monthly air temperature anomalies to May 2019.. 31
Figure 21. Sea level data return. .. 32
Executive Summary

This summary, and the overview that follows, is intended to provide a synopsis of the recent month’s observations in addition to longer-term variations over the life of the project to date.

May 2019

- The SEAFRAME network continued to collect high-quality sea level and associated meteorological information for monitoring climate variability and climate change.

- The overall rate of sea level data returned from the network during May was 95.9%.

- The station at Kiribati was damaged by a ship on 16th May upon which it stopped transmitting data. The station at Fiji was given a routine calibration and maintenance service from 14th-15th May.

- Monthly mean sea levels were higher than normal at Samoa (by +9 cm) and Marshall Islands (by +5 cm), but lower than normal at Solomon Islands (by -7 cm), PNG (-6 cm) and Niue (-6 cm).

- Monthly mean barometric pressures were near normal for this time of year.

- Monthly mean air temperatures were slightly warmer than normal at most stations, while monthly mean water temperatures were generally near normal for this time of year.
Welcome to the May 2019 Monthly Data Report for the Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The report details the month by month operation of the SEAFRAME sea level monitoring stations in the Pacific, including operational problems with the network or with satellite communications, the occurrence of abnormal sea level events and the interpretation of sea level fluctuations in the context of related astronomical tide, weather and climate variations.

The PSLGMP continues the work of the South Pacific Sea Level and Climate Monitoring Project (SPSLCMP) under a wider Climate and Oceans Support Program in the Pacific (COSPPac) initiative. The SPSLCMP was originally developed as an Australian response to concerns raised by the member countries of the South Pacific Forum over the potential impacts of global warming on climate and sea levels in the Pacific with the principal objective of ‘the provision of an accurate long-term record of sea level in the South Pacific for partner countries and the international scientific community which enables them to respond to and manage related impacts’.

The project’s sea level monitoring network consists of 13 SEAFRAME stations providing wide coverage across the Pacific Islands Forum region (Figure 1). The SEAFRAME stations not only measure sea level, but also observe a number of “ancillary” variables - air and water temperatures, wind speed, wind direction and atmospheric pressure.

An associated geodetic measurement program, implemented by Geosciences Australia, supports levelling surveys to first order, to determine shifts in the vertical of the sea level sensors due to local land movement, as well as continuous Global Positioning System (CGPS) stations to determine the vertical movement of the land with respect to the International Terrestrial Reference Frame.

Observations collected by the sea level monitoring network are routinely processed into a range of quality-controlled data products. The monthly data report is the primary source of up-to-date information relating to these data products.

Introduction
Figure 1. Network of SEAFRAME sea level monitoring stations in the Pacific.
Astronomical tides and weather conditions are largely responsible for daily perturbations in sea level, but over monthly, seasonal and longer timescales sea levels in the tropical Pacific are largely influenced by fluctuations in climate and ocean heat content across the Pacific.

The El Niño – Southern Oscillation climate cycle plays a key role in sea level variability. During El Niño sea levels are generally lower than normal across the western equatorial Pacific, as measured by the project’s sea level network, in response to weaker than normal easterly Trade Winds, cooler than normal ocean temperatures and higher than normal barometric pressures in this region. On the other hand, during La Niña the easterly Trade Winds are typically stronger than normal, ocean temperatures are warmer than normal and barometric pressures are lower than normal across the western Pacific, which often results in higher than normal sea levels at many of the project stations.

The sea level stations at PNG, Solomon Islands, Tuvalu and Samoa lie along a zone of convergent winds, known as the South Pacific Convergence Zone. Sea levels at these stations may become higher or lower than normal depending on the strength of these convergent winds or the shifting position of the convergence zone relative to its climatological mean. The sea level stations at Nauru and Kiribati lie very close to the equator and can both be influenced by sea level signals propagating along the equatorial waveguide.

Further climate information for Pacific Island countries is provided by the Climate and Oceans Support Program in the Pacific (COSPPac) at http://cosppac.bom.gov.au/.
Monthly Sea Level and Environmental Data

The observed sea levels (Figure 3) are dominated by the daily oscillations of the tide. In most cases, the tide rises and falls twice per day (semi-diurnal), but at PNG and the Solomon Islands the tide tends to have a single high and low per day (diurnal). Where the tides follow a semi-diurnal pattern the greatest tidal variations are called spring tides, which tend to occur around the time of the new and full moons. A new moon fell on the 4th of May while a full moon fell on the 18th of May.

Gaps in the data are the result of instrumental errors or data retrieval problems and are discussed under Instrument Performance.

The residuals (Figure 4) are the differences between the observed sea levels and the astronomical tidal predictions. They highlight non-tidal sea level fluctuations, such as those due to the effects of weather or tsunamis.

Tropical cyclones can produce storm surges where the combination of low barometric pressure and strong winds raise sea levels well above the predicted astronomical tides for a period of a day or more.

The non-tidal sea level fluctuations can be amplified or sustained by the shape of the harbour in which the gauge is located. Some of the SEAFRAME stations are located in harbours that exhibit ‘sloshing’ under certain conditions (a phenomenon referred to as a seiche), such as at PNG on ebbing tides or when the wind suddenly changes strength or direction, at FSM during smaller neap tides and at Nauru during strong westerly winds as was observed from 5th - 7th May 2019.

The sea level residuals at all stations, to some degree, exhibit semi-diurnal or diurnal fluctuations, which last a few days or weeks and then disappear. If these fluctuations were to persist they would form part of the astronomical tide prediction and thus not appear as residuals. Consequently semi-diurnal and diurnal residual fluctuations will always be transient in nature.

The barometrically corrected residuals (Figure 5) have had the effect of atmospheric pressure fluctuations removed from the sea level residuals of Figure 4. The rule of thumb for the ‘inverse barometer effect’ is that a 1-hPa fall in the barometer, if sustained over a day or more, produces a 1-cm rise in the local sea level (within the area beneath the low pressure system).

The winds, temperatures and barometric pressures are plotted in Figure 6 through Figure 11. The incident winds in Figure 8 follow the meteorological convention, that is, they point in the direction the wind is coming from. For example, the winds at Tonga prevailed from the southeast for most of the month.

Air and water temperatures (Figure 9 and Figure 10) are plotted using the same vertical scale for the purpose of comparison. The air temperatures are seen to fluctuate over a much wider range than the
water temperatures. At some sites (e.g. Solomon Islands) the water temperature shows almost no variation, although the air temperature varies by several degrees between night and day. At Nauru a twice-daily fluctuation in water temperature is sometimes observed that is related to interactions between tides and terrestrial (land-based) water discharging into the wharf area. The water temperature fluctuations there are usually more pronounced during the larger spring tides.

Barometric pressures (Figure 11) tend to fluctuate by around 3 hPa twice-daily at all stations as a result of atmospheric tides, which are largest in the tropical regions and reduce to near zero toward the poles. The longer-term barometric pressure fluctuations that occur over periods of days to weeks are due to passing weather systems. These fluctuations tend to be larger at sites farther away from the equator such as Cook Islands and Tonga.

The monthly sea level and ancillary data are put into perspective by Figure 12. In this figure, if an open circle falls above (below) a solid dot, a new maximum (minimum) for the particular month has been set. The data sets only include Pacific Sea Level and Geodetic Monitoring Project data, which have been collected since October 1992 when the first station was installed at Fiji. Two of the stations have shorter records than the rest of the network; Federated States of Micronesia (FSM) was installed in December 2001 and Niue was installed in August 2015.

A record-high May air temperature of 32.2 ºC was observed at Marshall Islands and a record-high May water temperature of 31.0 ºC was observed at Samoa.

Monthly Means and Anomalies

Figure 13 through Figure 16 show the monthly means, or simple arithmetic averages, for sea level, barometric pressure, water temperature and air temperature. Averaging over a month removes tidal and daily fluctuations, which helps reveal the seasonal, annual and longer-period variations in the records. Tuvalu, for example, normally experiences an annual sea level cycle of about 0.2 metres, reaching a peak around February or March. One effect of the El Niño of 1997-1998 was very low sea levels which disrupted the annual sea level cycle at many of the SEAFRAME stations (Figure 13).

Figure 17 through Figure 20 show the monthly mean sea level, barometric pressure, air temperature and water temperature anomalies. The sea level anomalies are the monthly-averaged residuals after tides, annual and semi-annual seasonal cycles and linear slope have been removed, by way of a harmonic tidal analysis of the complete record. The annual sea level cycle at Tuvalu (which has the largest consistent annual cycle) is quite noticeable in Figure 13 but less apparent in Figure 17. By removing the seasonal cycles, the anomalies help to bring out irregular features, such as lower than normal sea levels across the region during the 1997/98 El Niño.

Monthly mean sea levels for May 2019 were higher than normal at Samoa (by +9 cm) and Marshall Islands (+5 cm), but lower than normal at Solomon Islands (by -7 cm), PNG (-6 cm) and Niue (-6 cm). Elsewhere, sea levels were near normal for this time of the year (Figure 17).

The anomalies of barometric pressure, water and air temperature are determined in the same manner as the sea level anomalies, except the linear slope is not calculated.

Higher than normal barometric pressures were observed at SEAFRAME stations during the 1997-1998 El Niño and to a lesser extent the 2015-2016 El Niño (Figure 18). Monthly barometric pressures during May 2019 were generally near normal, although anomalies above +1 hPa were observed at Nauru and Vanuatu and an anomaly below -1 hPa was observed at Niue.

Monthly water temperatures during May were +0.7 ºC warmer than normal at Samoa but -0.6 ºC cooler than normal at Tonga, while elsewhere they were near normal for this time of year (Figure 19).

Monthly air temperatures during May were slightly warmer than normal at most stations, by as much as +0.5 ºC at Cook Islands, but slightly cooler at Fiji, Tonga and Niue, where the monthly anomaly was -0.5 ºC (Figure 20).

Over the duration of the record the air temperature anomalies generally (although not always) follow the water temperature anomalies, which is an indication of the large influence the ocean has upon the climate of the Pacific Islands.
Overall Rate of Movement in Sea Level

Table 1 shows the overall rate of movement in relative sea level at individual Pacific stations based on the data so far collected at those sites. For many of the sites, the underlying data sets are now over twenty years in length.

The overall rates of movement are updated every month by calculating the linear slope during the tidal analysis of all the quality-controlled data available at individual stations. The rates are relative to the SEAFRAME sensor benchmark, whose movement relative to inland benchmarks is monitored by Geosciences Australia. Collaborative efforts are being made to investigate vertical land movements, in order to provide corrections that are as rigorous as possible.

Please exercise caution in interpreting the overall rates of movement of sea level – the records are too short to be inferring long-term trends and have not been corrected for land movement or other parameters that may influence the reported rates.

Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through May 2019.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date of first data</th>
<th>Rate (mm/yr)</th>
<th>Change in rate from previous month (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall Is.</td>
<td>7°6'21.7"N</td>
<td>171°22'22.1"E</td>
<td>May 1993</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>FSM</td>
<td>6°58'49.9"N</td>
<td>158°12'0.8"E</td>
<td>Dec 2001</td>
<td>5.1</td>
<td>0.0</td>
</tr>
<tr>
<td>PNG</td>
<td>2°23'15.5"S</td>
<td>147°22'25.6"E</td>
<td>Sep 1994</td>
<td>5.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>9°25'44.1"S</td>
<td>159°57'19.3"E</td>
<td>Jul 1994</td>
<td>4.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Kiribati</td>
<td>1°21'54.2"N</td>
<td>172°55'58.8"E</td>
<td>Dec 1992</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Nauru</td>
<td>0°31'45.9"S</td>
<td>166°54'36.2"E</td>
<td>Jul 1993</td>
<td>5.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>8°30'8.9"S</td>
<td>179°11'42.6"E</td>
<td>Mar 1993</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Samoa</td>
<td>13°49'36.4"S</td>
<td>171°45'40.7"W</td>
<td>Feb 1993</td>
<td>9.3</td>
<td>+0.1</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>17°45'19.2"S</td>
<td>168°18'27.7"E</td>
<td>Jan 1993</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Fiji</td>
<td>17°36'17.7"S</td>
<td>177°26'17.7"E</td>
<td>Oct 1992</td>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Tonga</td>
<td>21°8'12.5"S</td>
<td>175°10'50.5"W</td>
<td>Jan 1993</td>
<td>6.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Cook Is</td>
<td>21°12'17.1"S</td>
<td>159°47'5.2"W</td>
<td>Feb 1993</td>
<td>3.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Niue</td>
<td>19°3'9.7"S</td>
<td>169°55'15.2"W</td>
<td>Aug 2015</td>
<td>11.9</td>
<td>-2.1</td>
</tr>
</tbody>
</table>

1Relative to SSBM (SEAFRAME Sensor Bench Mark)
Instrument Performance

In Figure 21, which shows sea level data return, the columns represent the percentage of quality-controlled data returned from the station each month.

Sea level data return from the network was 95.9% during May 2019 and 96.6% overall since the start of the project (Table 2). The station at Kiribati was damaged by a ship on 16th May 2019 and stopped transmitting data. Planning is underway to return it to service at the earliest opportunity. The station at Fiji was given a routine calibration and maintenance service on 14th-15th May.

With regards to the ancillary meteorological and oceanographic sensors, the water temperature sensors at PNG, Kiribati and Niue remained faulty and are scheduled for replacement, while the water temperature module at Cook Islands ceased to operate from 7th – 9th May.

<table>
<thead>
<tr>
<th>Location</th>
<th>Installation Date</th>
<th>Data Return Since Installation (%)</th>
<th>Data Return in May 2019 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook Is</td>
<td>Feb 1993</td>
<td>97.4</td>
<td>100</td>
</tr>
<tr>
<td>Tonga</td>
<td>Jan 1993</td>
<td>98.7</td>
<td>100</td>
</tr>
<tr>
<td>Fiji</td>
<td>Oct 1992</td>
<td>99.0</td>
<td>99.7</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>Jan 1993</td>
<td>96.1</td>
<td>100</td>
</tr>
<tr>
<td>Samoa</td>
<td>Feb 1993</td>
<td>96.9</td>
<td>100</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>Mar 1993</td>
<td>97.0</td>
<td>100</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Dec 1992</td>
<td>95.5</td>
<td>48.9</td>
</tr>
<tr>
<td>Nauru</td>
<td>Jul 1993</td>
<td>92.4</td>
<td>97.7</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>Jul 1994</td>
<td>97.9</td>
<td>100</td>
</tr>
<tr>
<td>PNG</td>
<td>Sep 1994</td>
<td>92.3</td>
<td>100</td>
</tr>
<tr>
<td>FSM</td>
<td>Dec 2001</td>
<td>94.6</td>
<td>100</td>
</tr>
<tr>
<td>Marshall Is.</td>
<td>May 1993</td>
<td>98.6</td>
<td>100</td>
</tr>
<tr>
<td>Niue</td>
<td>Aug 2015</td>
<td>99.1</td>
<td>100</td>
</tr>
<tr>
<td>Network Average</td>
<td></td>
<td>96.6</td>
<td>95.9</td>
</tr>
</tbody>
</table>
Standard SEAFRAME stations now employ a TELMET (previously SUTRON) programmable data logger, water level gauges and other sensors. The data logger and associated electronics are normally housed in fibreglass huts. A sketch of a typical SEAFRAME station is shown in Figure 2.

Water level sensors include:

1. Primary water level using a Bartex 'AQUATRAK' acoustic-in-air sensor,

2. Secondary water level (or backup) using a Druck pressure transducer mounted close to the seabed, and

3. Tertiary water level using a Vega-puls62 radar sensor mounted above the water.

Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station.
Tide Prediction Extension Project

A tide prediction extension project is aimed at extending the network of locations at which accurate tide predictions are available. Activities include the deployment of portable tide gauges in strategic locations, with the intention of observing sea levels for a sufficient length of time, ideally 1 year, to allow a thorough analysis of astronomical tides.

A portable tide gauge was installed at Neiafu, in the Vava’u group of islands in Tonga, in September 2013 and was retrieved in February 2015. The data has been analysed for astronomical tides and the results will enable tide predictions to be issued into the future.

Data from a portable tide gauge deployed by the Pacific Community (SPC) at Vaitupu atoll, Tuvalu, from June 2015 to September 2015 has also been analysed and will similarly form the basis of tide calendars into the future.

Sea level data for Kanton (January 1972 to December 2017) and Kiritimati (January 1974 to December 2017) in Kiribati were downloaded from the University of Hawaii Sea Level Centre (UHSLC) and will be used for the basis of tide predictions at those locations, on request by the Pacific Community (SPC) who gained approval from UHSLC.
Further Information

Online Resources

Geoscience Australia South Pacific Regional GNSS Network (Levelling Survey and Continuous GPS Monitoring):

Acknowledgement

The Monthly Data Report is prepared by the Bureau of Meteorology under the Pacific Sea Level and Geodetic Monitoring (PSLGM) Project, Climate and Oceans Support Program in the Pacific (COSPPac).

Further enquiries about the Monthly Data Report may be made to:

Bureau of Meteorology
Level 4, 431 King William Street
Adelaide SA 5000
Tel: +61 8 8366 2730
Email: tides@bom.gov.au

Please also note the following:

While care has been taken in the collection, analysis, and compilation of the data, it is supplied on the condition that the Commonwealth of Australia shall not be liable for any loss or injury whatsoever arising from the use of the data. Copyright for material contained in this document is held by the Commonwealth of Australia.
Appendix 1: SEAFRAME Data Figures
Figure 3. Sea level observations during May 2019.
Figure 4. Residual sea levels during May 2019.
Figure 5. Residual sea levels adjusted for barometric pressure during May 2019.
Figure 6. Wind speeds during May 2019.
Figure 7. Wind gusts during May 2019.
Figure 8. Incident winds during May 2019
Figure 9. Air temperatures during May 2019.
HOURLY WATER TEMPERATURES (°C)

May 2019 (UTC)

Figure 10. Water temperatures during May 2019.
Figure 11. Barometric pressures during May 2019.
Figure 12. Comparison of May 2019 data with long term May values.
MONTHLY MEAN SEA LEVELS THROUGH MAY 2019 (m)
(The zero line represents mean sea level)

Figure 13. Monthly mean sea levels to May 2019.
Figure 14. Monthly mean barometric pressures to May 2019.
MONTHLY MEAN WATER TEMPERATURES THROUGH MAY 2019 (°C)

Figure 15. Monthly mean water temperatures to May 2019.
Figure 16. Monthly mean air temperatures to May 2019.
Figure 17. Monthly sea level anomalies to May 2019.
BAROMETRIC PRESSURE ANOMALIES
THROUGH MAY 2019 (hPa)

Figure 18. Monthly barometric pressure anomalies to May 2019.
Figure 19. Monthly water temperature anomalies to May 2019.
Figure 20. Monthly air temperature anomalies to May 2019.
MONTHLY SEA LEVEL DATA RETURN THROUGH MAY 2019 (%)

Figure 21. Sea level data return.