Monthly Data Report – March 2016

Australian Baseline Sea Level Monitoring Array
Table of Contents

List of Tables .. iv
List of Figures ... iv
Executive Summary .. 1
Introduction .. 2
Sea Level and Climate .. 4
March SEAFRAME Data ... 5
 Monthly Sea Level and Environmental Data ... 5
 Monthly Means and Anomalies .. 7
 Overall Rate of Movement in Sea Level ... 8
 Instrument Performance .. 9
SEAFRAME Stations ... 10
Further Information ... 11
 Online Resources ... 11
 Acknowledgement .. 11
Appendix 1: SEAFRAME Data Figures .. 12
List of Tables
Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through March 2016. ... 8
Table 2. Rates of sea level data return.. 9

List of Figures
Figure 1. Australian Baseline Sea Level Monitoring Network of SEAFRAME stations ... 3
Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station ... 10
Figure 3. Sea level observations during March 2016. ... 13
Figure 4. Residual sea levels during March 2016 .. 14
Figure 5. Residual sea levels adjusted for barometric pressure during March 2016 .. 15
Figure 6. Wind speeds during March 2016 .. 16
Figure 7. Wind gusts during March 2016 .. 17
Figure 8. Incident winds during March 2016 .. 18
Figure 9. Air temperatures during March 2016 ... 19
Figure 10. Water temperatures during March 2016 ... 20
Figure 11. Barometric pressures during March 2016 .. 21
Figure 12. Comparison of March 2016 data with long-term March values ... 22
Figure 13. Monthly mean sea levels to March 2016 .. 23
Figure 14. Monthly mean barometric pressures to March 2016 ... 24
Figure 15. Monthly mean water temperatures to March 2016 .. 25
Figure 16. Monthly mean air temperatures to March 2016 .. 26
Figure 17. Monthly sea level anomalies to March 2016 ... 27
Figure 18. Monthly barometric pressure anomalies to March 2016 .. 28
Figure 19. Monthly water temperature anomalies to March 2016 .. 29
Figure 20. Monthly air temperature anomalies to March 2016 ... 30
Figure 21. Sea level data return .. 31
Executive Summary

This summary, and the overview that follows, are intended to provide a synopsis of the recent month’s observations in addition to longer term variations over the life of the project to date.

March 2016

- The Australian Baseline Sea Level Monitoring Array (ABSLMA) network continued to collect high quality sea level and associated meteorological information to support long-term sea level monitoring around Australia.

- Monthly average sea levels were lower than normal at all locations except Rosslyn Bay during March 2016.

- Barometric pressures were slightly higher than normal during March.

- Back-up radar data was utilised at Broome as Aquatrak continues to malfunction.
Welcome to the March 2016 Monthly Data Report for the Australian Baseline Sea Level Monitoring Array (ABSLMA). The report details the month by month operation of SEAFRAME sea level monitoring stations around Australia, including operational problems with the network and the occurrence of abnormal sea level events in the context of related astronomical tide, weather and climate variations. A companion array of SEAFRAME sea level monitoring stations in Pacific Island Countries is supported under the Pacific Sea Level Monitoring Project.

The ABSLMA was originally developed and supported from grants under the Australian Climate Change Science Program through the Department of Climate Change and Energy Efficiency, with a primary goal to monitor long-period sea level changes around Australia focussing particularly on the enhanced greenhouse effect. Operation of the array continues to be supported by the Bureau of Meteorology, underpinning the advanced technologies gathering global observations for climate change research as well as providing real-time information for tidal monitoring and tsunami detection.

The Baseline sea level monitoring array consists of 14 standard SEAFRAME stations operated by the Bureau of Meteorology at representative sites around Australia, as well as two customised, privately-owned stations at Lorne and Stony Point (Figure 1). The SEAFRAME at Port Stanvac was removed in December 2010 to allow Mobil Refining Australia to decommission the oil refinery. Re-establishment of the SEAFRAME station at Port Stanvac is being investigated.

The standard SEAFRAME stations not only measure sea level, but also observe a number of “ancillary” variables - air and water temperatures, wind speed, wind direction and barometric pressure. The privately-owned stations at Lorne and Stony Point do not measure the ancillary variables, although winds are measured at Stony Point.

The Bureau of Meteorology and Geosciences Australia, through their membership on the Intergovernmental Committee on Surveying and Mapping (ICSM) Permanent Committee on Tides & Mean Sea Level (PCTMSL), strive to sustain geodetic levelling programs implemented by various state surveying organisations in order to monitor shifts in the vertical of the sea level sensors due to local land movement.

Observations collected by the sea level monitoring network are routinely processed into a range of quality-controlled data products. The monthly data report is the primary source of up-to-date information relating to these data products.
Figure 1. Australian Baseline Sea Level Monitoring Network of SEAFRAME stations.
Astronomical tides and weather conditions are largely responsible for daily perturbations in sea level, but over monthly, seasonal and longer timescales sea levels around Australia are largely influenced by fluctuations in climate and ocean heat content.

Intra-annual or seasonal changes in sea level are closely linked to the annual solar radiation cycle and associated shifts in weather patterns and ocean current systems. Across southern Australia, sea levels tend to be at their highest during winter, while the opposite is true across northern Australia, where sea levels tend to be higher during the summer wet season. Further information relating to seasonal climate variations around Australia is provided by the Bureau of Meteorology at http://www.bom.gov.au/climate/

Inter-annual sea level variations are largely influenced by the El Niño – Southern Oscillation climate cycle, particularly across the northern and western Australian coastlines. Sea levels are generally lower than normal around Australia during El Niño, in response to cooler than normal ocean temperatures and higher than normal barometric pressures that are brought about by weaker than normal easterly Trade Winds across the Pacific. Conversely, during La Niña sea levels around Australia are generally higher than normal, in association with warmer than normal ocean temperatures and lower than normal barometric pressures, due to stronger than normal easterly Trade Winds across the Pacific.

Monthly Sea Level and Environmental Data

The observed sea levels (Figure 3) are dominated by the daily oscillations of the tide. In most cases, the tide rises and falls twice per day (semi-diurnal), but at Groote Eylandt and Hillarys the tide tends to have a single high and low per day (diurnal). Where the tides follow a semi-diurnal pattern the greatest tidal variations are called spring tides, which tend to occur around the time of the new and full moons. A new moon fell on the 9th whilst a full moon fell on the 23rd of March.

Gaps in the data are the result of instrumental errors or data retrieval problems and are discussed under Instrument Performance.

The residuals (Figure 4) are the differences between the observed sea levels and the astronomical tidal predictions. They highlight non-tidal sea level fluctuations, such as those due to the effects of weather or tsunamis. Low pressure systems can produce storm surges where the combination of low barometric pressure and strong winds raise sea levels well above the predicted astronomical tides for a period of a day or more. The non-tidal sea level fluctuations can be amplified or sustained by the shape of the bay or harbour in which the gauge is located. Some of the SEAFRAME stations are located in harbours that exhibit ‘sloshing’ under certain conditions (a phenomenon referred to as a seiche). The sea level residuals at all stations from time to time and to some degree exhibit semi-diurnal or diurnal fluctuations which last a few days or weeks and then disappear. If these fluctuations were to persist they would form part of the astronomical tide prediction and thus not appear as residuals. Consequently semi-diurnal and diurnal residual fluctuations will always be transient in nature.

The barometrically corrected residuals (Figure 5) have had a major part of the effect of atmospheric pressure fluctuations removed from the sea level residuals of Figure 4. The rule of thumb for the ‘inverse barometer effect’ is that a 1-hPa fall in the barometer, if sustained over a day or more, produces a 1-cm rise in the local sea level (within the area beneath the low pressure system).

The winds, temperatures and barometric pressures are plotted in Figure 6 to Figure 11. The incident winds in Figure 8 follow the meteorological convention, that is, they point in the direction the wind is coming from. For example, the winds at Thevenard generally prevailed from the south-east during March.

Air and water temperatures (Figure 9 and Figure 10) are plotted using the same vertical scale for the purpose of comparison. The air temperatures are seen to fluctuate over a much wider range than the water temperatures.

Barometric pressures (Figure 11) tend to fluctuate by around 3 hPa twice-daily at all stations as a result of atmospheric tides, which are largest in the tropical regions and reduce to near zero toward the poles. The longer-term barometric pressure
fluctuations that occur over periods of days to weeks are due to passing weather systems. These fluctuations tend to be larger at sites farther away from the equator, particularly those along the southern Australian coastline.

The monthly data extremes are put into perspective by Figure 12. In this figure, if an open circle falls above (below) a solid dot, a new maximum (minimum) for the particular month has been set. The data sets only include the ABSLMA data, which have been collected since May 1990 when the first station was installed at Darwin.

A record-low March sea level was recorded at Stony Point during March 2016.

A record-high March water temperature of 31.9 °C was recorded at Groote Eylandt and the record-low water temperature at Port Kembla of 17.9 °C was equalled during March.

A record-low March barometric pressure of 994.6 hPa was recorded at Port Kembla this month.

Monthly Means and Anomalies

Figure 13 through Figure 16 show the monthly means, or simple arithmetic averages, for sea level, barometric pressure, water temperature and air temperature. The monthly means demonstrate the seasonal variations of the recorded parameters. Groote Eylandt, for example, normally experiences an annual sea level cycle of about 0.6 m that peaks around February of each year. The monthly mean water temperature of 31.9 °C observed at Groote Eylandt this month was the highest since the SEAFRAME was established in 1993.

Figure 17 through Figure 20 show the monthly mean sea level, barometric pressure, air temperature and water temperature anomalies. The sea level anomalies are the residuals after tides, annual and semi-annual seasonal cycles and linear slope have been removed by way of harmonic tidal analysis of the complete record. The annual sea level cycle at Groote Eylandt (which has the largest consistent annual cycle) is quite notable in Figure 13 but less apparent in Figure 17. By removing the seasonal cycles, the anomalies help to bring out irregular features, such as lower than normal sea levels around much of Australia during the 1997/98 El Niño.

In association with the current El Niño, the sea level anomalies in the Australian region during March were substantially lower than normal. All sites, with the exception of Rosslyn Bay, recorded negative sea level anomalies, with significant negative anomalies being recorded at Groote Eylandt (-14 cm), Darwin (-14 cm), Broome (-16 cm) and Hillarys (-13 cm).

The anomalies of barometric pressure (Figure 18), water and air temperature (Figure 19 and Figure 20 respectively) are determined in the same manner as the sea level anomalies, except the linear slope is not calculated.

A barometric pressure anomaly of +2.4 hPa was observed at Spring Bay during March whilst the barometric pressures were near normal at all other sites.

Positive water temperature anomalies were observed at most locations this month, including Groote Eylandt (+1.6 °C), Burnie (+1.0 °C) and Spring Bay (+1.5 °C).

Air temperatures were also warmer than normal during March 2016 at most locations, particularly at Groote Eylandt (+1.8 °C), Darwin (+1.3 °C), Broome (+1.1 °C), Burnie (+1.1 °C) and Spring Bay (+1.0 °C).
Overall Rate of Movement in Sea Level

Table 1 shows the overall rate of movement in sea level at individual Australian Baseline stations based on the data so far collected at those sites. For all of the sites, the underlying data sets now exceed twenty years in length.

The overall rates of movement are updated every month by calculating the linear slope during the tidal analysis of all the data available at individual stations. The rates are relative to the SEAFRAME sensor benchmark, whose movement relative to inland benchmarks is monitored by Geosciences Australia.

Please exercise caution in interpreting the overall rates of movement of sea level – the records are too short to be inferring long-term trends.

Table 1. Updated overall rates of sea level movement based on SEAFRAME data from installation through March 2016.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date of first data</th>
<th>Rate (mm/yr)</th>
<th>Change in rate from previous month (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocos Island</td>
<td>12°07'07.1"S</td>
<td>96°53'30.9"E</td>
<td>Sep 1992</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Groote Eylandt</td>
<td>13°51'36.2"S</td>
<td>136°24'56.1"E</td>
<td>Sep 1993</td>
<td>5.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>Darwin</td>
<td>12°28'18.4"S</td>
<td>130°50'45.1"E</td>
<td>May 1990</td>
<td>6.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Broome</td>
<td>18°00'03.0"S</td>
<td>122°13'07.1"E</td>
<td>Nov 1991</td>
<td>6.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>Hillarys</td>
<td>31°49'32.0"S</td>
<td>115°44'18.9"E</td>
<td>Nov 1991</td>
<td>8.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Esperance</td>
<td>33°52'15.2"S</td>
<td>121°53'43.3"E</td>
<td>Mar 1992</td>
<td>5.6</td>
<td>-0.1</td>
</tr>
<tr>
<td>Thevenard</td>
<td>32°08'56.2"S</td>
<td>133°38'28.8"E</td>
<td>Mar 1992</td>
<td>4.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>Port Stanvac 2</td>
<td>35°06'31.0"S</td>
<td>138°28'1.3"E</td>
<td>Jun 1992</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Portland</td>
<td>38°20'36.4"S</td>
<td>141°36'47.4"E</td>
<td>Jul 1991</td>
<td>2.9</td>
<td>-0.1</td>
</tr>
<tr>
<td>Lorne</td>
<td>38°32'49.4"S</td>
<td>143°59'19.8"E</td>
<td>Jan 1993</td>
<td>2.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>Stony Point</td>
<td>38°22'19.7"S</td>
<td>145°13'28.9"E</td>
<td>Jan 1993</td>
<td>2.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Burnie</td>
<td>41°03'0.3"S</td>
<td>145°54'54.0"E</td>
<td>Sep 1992</td>
<td>2.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Spring Bay</td>
<td>42°32'45.1"S</td>
<td>147°55'57.8"E</td>
<td>May 1991</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Port Kembla</td>
<td>34°28'25.5"S</td>
<td>150°54'42.7"E</td>
<td>Jul 1991</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Rosslyn Bay</td>
<td>23°09'39.7"S</td>
<td>150°47'24.6"E</td>
<td>Jun 1992</td>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Cape Ferguson</td>
<td>19°16'38.4"S</td>
<td>147°03'30.4"E</td>
<td>Sep 1991</td>
<td>4.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

1Relative to SSBM (SEAFRAME Sensor Benchmark)
2Port Stanvac decommissioned November 2010
Instrument Performance

In Figure 21, which shows sea level data return, the columns represent the percentage of quality-controlled data returned from the gauge each month.

Sea level data return from the operating network was 99.8% (93.5% if Port Stanvac, decommissioned in 2010, is included in the network) during March 2016 (Table 2).

The Broome Aquatrak sensor has remained malfunctioning since the 25th of January 2016 despite attempts to rectify the situation. Back-up radar data has been substituted. The anemometer at Groote Eylandt is currently non-operational.

The water temperature sensors at Broome and Darwin have both been non-operational for over 12 months and will be restored during the next routine calibration and maintenance visits.

The Stony Point wind gust data has been removed as the data appears unreliable.

<table>
<thead>
<tr>
<th>Location</th>
<th>Installation Date</th>
<th>Data Return Since Installation (%)</th>
<th>Data Return in March 2016 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocos Islands</td>
<td>Sep 1992</td>
<td>99.5</td>
<td>97.8</td>
</tr>
<tr>
<td>Groote Eylandt</td>
<td>Sep 1993</td>
<td>98.8</td>
<td>100</td>
</tr>
<tr>
<td>Darwin</td>
<td>May 1990</td>
<td>99.8</td>
<td>100</td>
</tr>
<tr>
<td>Broome</td>
<td>Nov 1991</td>
<td>97.6</td>
<td>99.5</td>
</tr>
<tr>
<td>Hillarys</td>
<td>Nov 1991</td>
<td>99.9</td>
<td>100</td>
</tr>
<tr>
<td>Esperance</td>
<td>Mar 1992</td>
<td>97.9</td>
<td>100</td>
</tr>
<tr>
<td>Thevenard</td>
<td>Mar 1992</td>
<td>99.3</td>
<td>100</td>
</tr>
<tr>
<td>Port Stanvac(^1)</td>
<td>Jun 1992</td>
<td>85.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Portland</td>
<td>Jul 1991</td>
<td>99.3</td>
<td>100</td>
</tr>
<tr>
<td>Lorne</td>
<td>Jan 1993</td>
<td>94.9</td>
<td>99.9</td>
</tr>
<tr>
<td>Stony Point</td>
<td>Jan 1993</td>
<td>98.8</td>
<td>100</td>
</tr>
<tr>
<td>Burnie</td>
<td>Sep 1992</td>
<td>98.6</td>
<td>100</td>
</tr>
<tr>
<td>Spring Bay</td>
<td>May 1991</td>
<td>99.5</td>
<td>100</td>
</tr>
<tr>
<td>Port Kembla</td>
<td>Jul 1991</td>
<td>99.5</td>
<td>100</td>
</tr>
<tr>
<td>Rosslyn Bay</td>
<td>Jun 1992</td>
<td>96.3</td>
<td>100</td>
</tr>
<tr>
<td>Cape Ferguson</td>
<td>Sep 1991</td>
<td>98.3</td>
<td>99.5</td>
</tr>
<tr>
<td>Network Average</td>
<td></td>
<td>97.7</td>
<td>93.5</td>
</tr>
</tbody>
</table>

Port Stanvac was decommissioned November 2010
SEAFRAME Stations

Standard SEAFRAME stations now employ a TELMET (previously SUTRON) programmable data logger, water level gauges and other sensors. The data logger and associated electronics are normally housed in fibreglass huts. A sketch of a typical SEAFRAME station is shown in Figure 2.

Water level sensors include:

1. Primary water level using a Barten 'AQUATRAK' acoustic-in-air sensor,

2. Secondary water level (or backup) using a Druck pressure transducer mounted close to the seabed, and

3. Tertiary water level using a Vega-puls62 radar sensor mounted above the water.

Figure 2. Schematic diagram of a SEAFRAME sea level monitoring station.
Further Information

Online Resources

Acknowledgement

The Monthly Data Report is prepared by the Bureau of Meteorology.

Further enquiries about the Monthly Data Report may be made to:

Bureau of Meteorology
PO Box 421
Kent Town SA 5067
Tel: (+618) (08) 8366 2730
Email: ntc@bom.gov.au

Please also note the following:

While care has been taken in the collection, analysis, and compilation of the data, it is supplied on the condition that the Commonwealth of Australia shall not be liable for any loss or injury whatsoever arising from the use of the data. Copyright for material contained in this document is held by the Commonwealth of Australia.
Appendix 1: SEAFRAME Data Figures

Please note: The privately-owned stations at Stony Point and Lorne do not record air temperature, water temperature and barometric pressure data and are not present in Figures 5, 9, 10, 11 and 12. The tide gauge at Lorne does not record wind data and is not present in Figures 6, 7 and 8.

The anemometers at Esperance and Spring Bay have been removed.
Figure 3. Sea level observations during March 2016.
SIX MINUTE RESIDUAL WATER LEVELS (m)

March 2016 (UTC)

Figure 4. Residual sea levels during March 2016.
SIX MINUTE RESIDUALS
ADJUSTED FOR BAROMETRIC PRESSURE (m)

March 2016 (UTC)

Cocos Island
Groote Eylandt
Darwin
Broome
Hillarys
Esperance
Thevenard
Port Stanvac
Portland
Lorne
Stony Point
Burnie
Spring Bay
Port Kembla
Rosslyn Bay
Cape Ferguson

Figure 5. Residual sea levels adjusted for barometric pressure during March 2016.
Figure 6. Wind speeds during March 2016.
Figure 7. Wind gusts during March 2016.
Figure 8. Incident winds during March 2016.
Figure 9. Air temperatures during March 2016.
HOURLY WATER TEMPERATURES (°C)

March 2016 (UTC)

Figure 10. Water temperatures during March 2016.
Figure 11. Barometric pressures during March 2016.
COMPARISON OF MARCH 2016 MAX, MIN AND MEAN WITH LONG-TERM MARCH VALUES

Figure 12. Comparison of March 2016 data with long-term March values.
MONTHLY MEAN SEA LEVELS THROUGH MARCH 2016 (m)
(The zero line represents mean sea level)

Figure 13. Monthly mean sea levels to March 2016.
Figure 14. Monthly mean barometric pressures to March 2016.
MONTHLY MEAN WATER TEMPERATURES
THROUGH MARCH 2016 (°C)

Figure 15. Monthly mean water temperatures to March 2016.
MONTHLY MEAN AIR TEMPERATURES
THROUGH MARCH 2016 (°C)

Figure 16. Monthly mean air temperatures to March 2016.
Figure 17. Monthly sea level anomalies to March 2016.
Figure 18. Monthly barometric pressure anomalies to March 2016.
Figure 19. Monthly water temperature anomalies to March 2016.
AIR TEMPERATURE ANOMALIES THROUGH MARCH 2016 (°C)

Figure 20. Monthly air temperature anomalies to March 2016.
MONTHLY SEA LEVEL DATA RETURN
THROUGH MARCH 2016 (%)

Figure 21. Sea level data return.