ACCESS-R: single-level "wind" fields

A number of raw and post-processed NWP products are available as outputs from the Australian Community Climate Earth-System Simulator (ACCESS) suite of Numerical Weather Prediction models which are run routinely by the Bureau National Operations Centre (BNOC). This document describes the content of the ACCESS-R (version APS1) IDY25300.wind.10m.YYYYMMDDHH.HHH.surface series of products.

For background information about ACCESS please refer to the top-level ACCESS NWP technical data documentation page.

If you require further information or assistance about ACCESS NWP products contact the Bureau's Registered User Services section.

Model summary

ACCESS-R covers an Australian regional domain, has a resolution of about 12 km and is run four times per day (00Z, 06Z, 12Z & 18Z basetimes) out to a forecast hour (FHR) of +72. This model is nested in the ACCESS-G model and consists of both an assimilation and forecast component.

NWP data filename convention

All NWP files in this product series have names that conform to the following convention:

IDY25300.wind.10m.YYYYMMDDHH.HHH.surface.grb2 or IDY25300.wind.10m.YYYYMMDDHH.HHH.surface.nc4

where

YYYYMMDDHH: Base-date of model run in UTC time. YYYY = year, MM = month, DD = day, HH = hour
HHH: Forecast hour. A FHR of 000 is the analysis time-step.

Horizontal grid geometries

<table>
<thead>
<tr>
<th>Variant [IDY code]</th>
<th>Resolution [Lon x Lat]</th>
<th>Domain limits [W to E, N to S (Lon x Lat grid points)]</th>
<th>Parameters [NC Vars]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDY25300</td>
<td>0.110 by 0.110</td>
<td>65.000 to 184.570, -65.000 to 16.950 (1088 x 746)</td>
<td>All</td>
</tr>
<tr>
<td>IDY25301</td>
<td>0.110 by 0.110</td>
<td>95.030 to 169.940, -54.990 to 4.960 (682 x 546)</td>
<td>All</td>
</tr>
</tbody>
</table>

Please note that

- Latitude values in GRIB and NetCDF files are ordered North to South while longitude values are ordered West to East.
- Longitudes always lie in the range 0.0 to 360.0 degrees. Longitudes can be transformed to lie between -180 and +180 degrees by subtracting 360 degrees from any longitude values greater than 180.
Time steps

Forecast hours of single-level fields:

0 to 75 by 1

Parameters

The following fields are included in this product series. Note that the "G2 d.c.n" table column refers to a field's GRIB2 'discipline','parameterCategory','parameterNumber' metadata. For more information see [GRIB2 format notes](#).

Single-level fields

<table>
<thead>
<tr>
<th>G2 d.c.n</th>
<th>NetCDF var</th>
<th>Steps</th>
<th>G2 Units</th>
<th>NC Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2.2</td>
<td>u10</td>
<td>All</td>
<td>m s⁻¹</td>
<td>m s⁻¹</td>
<td>10m wind u component</td>
</tr>
<tr>
<td>0.2.3</td>
<td>v10</td>
<td>All</td>
<td>m s⁻¹</td>
<td>m s⁻¹</td>
<td>10m wind v component</td>
</tr>
</tbody>
</table>

Explanation of steps column terms

- **All:** Parameter available at all time-steps
- **fhr...:** Parameter available from fhr onward

Notes on specific NWP file-formats

For technical notes about the GRIB2 encoding of ACCESS data, please refer to [GRIB2 format notes](#). For technical notes about the NetCDF4 encoding of ACCESS data, please refer to [NetCDF format notes](#).

Appendix A - Extended Field Descriptions

Extended description of single-level fields

<table>
<thead>
<tr>
<th>G2 d.c.n</th>
<th>NetCDF var</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2.2</td>
<td>u10</td>
<td>Zonal (U) component of the wind velocity at 10m above-ground-level. [m s⁻¹]</td>
</tr>
<tr>
<td>0.2.3</td>
<td>v10</td>
<td>Meridional (V) component of the wind velocity at 10m above-ground-level. [m s⁻¹]</td>
</tr>
</tbody>
</table>

Please note:

- Fields in the above tables are listed in the same order as shown in the Parameters section of this document.
- Units in the above table refer to NetCDF fields. In some cases fields were scaled/offset to convert to SI units for WMO GRIB2 compliance.
- The nature of fields can not always be deduced easily from their NetCDF variable names. It is always safest to refer to the detailed description of a parameter.