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Executive summary

In the practice of point forecasting, it is desirable that forecasters receive a directive in the
form of a scoring function (such as the absolute error or squared error scoring functions)
that will be used to evaluate forecasts, or of a statistical functional (such as the median
or mean) of the predictive distribution that is being sought. In this report, we study
the properties of a family of scoring functions that are intermediaries between the squared
error or absolute error scoring functions, and an associated family of statistical functionals
that are intermediaries between the median and mean, and demonstrate the value of these
families for point forecasting contexts.

More precisely, we introduce a three-parameter family of functionals, called Huber
functionals, which nest as limiting cases the family of quantiles (which includes the me-
dian) and the family of expectiles (which includes the mean). The Huber functional of a
predictive distribution has the property that it is an optimal point forecast when scored
with the generalised Huber loss scoring function. This scoring function loss applies a (pos-
sibly asymmetric) quadratic penalty to small errors and a (possibly asymmetric) linear
penalty to large errors. A particular subfamily of Huber functionals are the Huber means,
which are intermediaries between the median and mean functionals. The Huber mean of a
distribution is the midpoint of the central interval of the distribution, and so is the natural
functional to use when one wants a point summary of the location of the central bulk of
a distribution while ignoring behaviour at its tails.

We give three important theoretical results about the Huber functional: a characterisa-
tion of its consistent scoring functions, that it is elicitable, and that its consistent scoring
functions have a mixture representation in terms of elementary scoring functions. The
elementary scoring functions of the Huber functional admit an economic interpretation in
the context of investment problems with capped profits and losses, so that point forecasts
targeting the Huber functional are used to construct optimal decision rules in such situa-
tions. Synthetic experiments illustrate the utility of the Huber loss scoring function as a
robust scoring function for situations with contaminated observational data.

The Huber functional thus presents an attractive alternative to quantiles and expectiles
in many point forecasting contexts.

1 Introduction

In many fields of human endeavour, it is desirable to make forecasts for an uncertain
future. Hence, forecasts should be probabilistic, presented as probability distributions
over possible future outcomes [Gneiting and Katzfuss, 2014]. Nonetheless, many practical
situations require forecasters to issue single-valued point forecasts for reasons including
ease of communication, reporting requirements and tradition. In this situation, a directive
is required about the specific feature or functional of the predictive distribution that is
being sought, or about the specific loss (or scoring) function that is to be minimised
[Gneiting, 2011a, Ehm et al., 2016].

Well-known target functionals include the mean, median or a specific quantile. A lesser
known family of functionals is the expectiles, which has recently attracted interest in risk
management [Bellini and Di Bernardino, 2017]. Examples of scoring functions include the
squared error scoring function S(x, y) = (x − y)2 and absolute error scoring function
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S(x, y) = |x− y|. More generally, a functional T is mapping from a class F of probability
distributions to (subsets of) the real line R, while a scoring function S is a non-negative
function on a specified prediction–observation domain that assigns a loss or penalty S(x, y)
when the point forecast x is issued and the observation y realises [Gneiting, 2011a]. The
predictive performance of a forecast system can be assessed by computing its mean score
S̄ over a finite number of forecast cases.

In this report we introduce a three-parameter family {Hα
a,b : 0 < α < 1, a > 0, b > 0}

of functionals that act on probability distributions that are defined on the real line R or
on subintervals of R. This family nests, as limiting cases, the quantiles (including the
median functional) and the expectiles (including the mean functional). The special case

H
1/2
a,a , where a > 0, has the property that it generates the set of optimal point forecasts

for the scoring function

S(x, y) =

{
1
2(x− y)2 , |x− y| ≤ a
a|x− y| − 1

2a
2 , |x− y| > a ,

(1.1)

in the sense that the expected score EFS(x, Y ) is minimised precisely whenever x ∈
H

1/2
a,a (F ). (Here and throughout the notation EF indicates that the expectation is taken

with respect to Y ∼ F for a given distribution F .) The scoring function S of Equation
(1.1) is essentially the classical Huber loss function [Huber, 1964], named for Peter Huber’s

pioneering work on robust parameter estimation, while the functional H
1/2
a,a also featured

in [Huber, 1964] for finite discrete distributions. We therefore call H
1/2
a,a a Huber mean.

Members Hα
a,b of the larger family generate optimal point forecasts of a generalised version

of the scoring function (1.1), and we name them Huber functionals.
The Huber mean has properties that make it a useful summary of the centre of a prob-

ability distribution F without being sensitive to the behaviour of F at its tails. Roughly

speaking, the Huber mean H
1/2
a,a is the midpoint of the ‘central interval’ of F with length

2a. It is an intermediary between the median (which it approaches as a ↓ 0) and the mean
(which it approaches as a→∞). This makes the Huber mean a useful target functional in
situations where a point summary of the central ‘bulk’ of a distribution is desired, neglect-
ing behaviour at the tails. Similarly, the Huber functional Hα

a,a is an intermediary between
the α-quantile (which it approaches as a ↓ 0) and the α-expectile (which it approaches as
a→∞).

This report has theoretical and applied aspects. The three main theoretical results are
that the Huber functional is elicitable (Theorem 4.5), a characterisation of its consistent
scoring functions (also Theorem 4.5), and that its consistent scoring functions have a
mixture representation in terms of elementary scoring functions (Theorem 5.2).

A scoring function S is consistent for a functional T relative to some class F of dis-
tributions if every value of T(F ) is a minimiser x̂ of the expected score EFS(x, Y ), for
every distribution F in F . If, in addition, every minimiser x̂ belongs to T(F ) then S is
strictly consistent. Under a strictly consistent scoring function, a forecaster will optimise
their expected score by giving a truthful and accurate assessment of the functional T(F )
[Gneiting, 2011a]. To give an example, the squared error scoring function is strictly con-
sistent for the mean functional relative to the class of probability distributions with finite
variance. But there are many other consistent scoring functions for this functional. Savage
[Savage, 1971] showed that, under weak regularity conditions, S is consistent for the mean

2



POINT FORECASTING AND FORECAST EVALUATION WITH GENERALISED HUBER LOSS

functional if and only if it is of the form

S(x, y) = φ(y)− φ(x) + (x− y)φ′(x) , (1.2)

where φ is a convex function with subgradient φ′; the squared error scoring function arises
when φ(t) = t2. Analogous results exist for quantiles [Gneiting, 2011b] and expectiles
[Gneiting, 2011a]. Our first main theoretical result is that, under weak regularity condi-
tions, the consistent scoring functions S for the Huber functional can also be characterised
as having a general form, where, similarly to Equation (1.2), S is parametrised by convex
functions φ. Moreover, edge cases of this form recover the general form of the consistent
scoring functions for quantiles and expectiles.

If point forecasts targeting a specified functional are to be evaluated against obser-
vations, it is critical that the functional has a strictly consistent scoring function rela-
tive to a suitable class F of probability distributions. If such a scoring function exists,
the functional is said to be elicitable. In contrast, the quality of point forecasts tar-
geting a nonelicitable functional cannot be adequately assessed using a scoring function
[Gneiting and Katzfuss, 2014]. Our second main theoretical result is that, if I is an interval
of R then the Huber functional is elicitable relative to the class of probability distributions
on I, with the additional condition that the distributions have finite first moment in the
case when I = R.

Our third major theoretical result is that, subject to unimportant regularity condi-
tions, every consistent scoring function S for a specific Huber functional admits a mixture
representation of the form

S(x, y) =

∫ ∞
−∞

Sθ(x, y) dM(θ) (1.3)

where M is a non-negative measure and {Sθ : θ ∈ R} is a one-parameter family of con-
sistent scoring functions called elementary scoring functions. That is, every consistent
scoring function can be written as a weighted average of elementary scoring functions.
Analogous results for the consistent scoring functions of quantiles and expectiles were
given by [Ehm et al., 2016], and these results are recoverable from the representation in
the Huber functional case by taking appropriate limits. Mixture representations have sev-
eral applications, such as determining whether one forecast system empirically dominates
another (in the sense that the mean score of one system is lower than the other for every
consistent scoring function), and aiding the selection of an appropriate consistent scoring
function for forecasts disseminated to a heterogeneous user group.

From a practical standpoint, we highlight three use cases of the Huber functional or
of Huber loss. First, as mentioned above, the Huber mean will be of interest when a
point summary specifying the location the central interval of a distribution, unaffected by
behaviour at the tails, is desired.

Second, the Huber functional arises in optimal decision rules for investment problems
with fixed up-front costs and where profits and losses are both capped. The economic
regret, relative to actions based on a perfect forecast, in such investment problems is
proportional to one of the elementary scores Sθ(x, y) in the mixture representation (1.3).
Thus the optimal decision rule specifies action based on point forecasts that target an
appropriate Huber functional. Past performance of competing point forecasts that target
the Huber functional can be evaluated using a Murphy diagram, which is a graph of mean

3
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elementary scores S̄θ(x, y) against θ [Ehm et al., 2016], so that each decision maker can
choose to use the forecast system that would have historically minimised economic regret
based on their particular decision rule.

Third, we demonstrate that Huber loss can be used as a robust scoring function for
point forecasts targeting the mean functional in situations where forecasts are judged
against observations that are contaminated, say, by faults in the observation measurement
process. While the squared error scoring function is consistent for the mean, the presence
of contaminated observations can grossly distort forecast rankings based on it. The Huber
loss scoring function provides a palatable alternative.

The remainder of this report is organised as follows. In Section 2 we introduce nota-
tion and lay out the mathematical setting. Section 3 defines the Huber functional, states
some of its basic properties, and compares it with quantiles and expectiles. Results about
the elicitability of the Huber functional and the characterisation of its scoring functions
are given in Section 4. Section 5 presents the mixture representation for consistent scor-
ing functions of the Huber functional, and discusses a range of applications related to
this result, including understanding the rankings of forecasts, choosing consistent scoring
functions for heterogeneous user groups, and identifying the type of investment problems
that naturally give rise to the Huber functional. The use of Huber loss for robust verifi-
cation of forecasts targeting the mean functional is illustrated in Section 6 via a synthetic
experiment. Conclusions are summarised in Section 7, and the proofs of the main results
are given in the appendix.

2 Notation

We work in a setting where point forecasts x and observations y take values in some
interval I of the real line R, including the case when I = R. A predictive distribution
F can be issued for a future, as yet unknown, observation Y , which encodes the forecast
P(Y ≤ t) = F (t) whenever t ∈ I.

The family F of potential predictive distributions F that we consider is quite general.
In practical settings, F includes those distributions having a probability density function
(PDF), those having a discrete distribution, and those that are a mixture of the two. To
be precise, let F(R) denote the class of probability measures on the Borel–Lebesgue sets
of R, and, for an interval I ⊂ R, let F(I) denote the subset of probability measures on
I. For simplicity, we do not distinguish between a measure F in F(R) and its associated
cumulative density function (CDF) F . We follow standard conventions and assume that
CDFs are right continuous. For F in F(I), write Y ∼ F to indicate that a random variable
Y has distribution F ; that is, P(Y ≤ t) = F (t) whenever t ∈ I. Throughout this report,
the notation EF indicates that the expectation is taken with respect to Y ∼ F .

Let 1 denote the indicator function, so that, for example, 1{x≥y} equals 1 whenever
x ≥ y and 0 otherwise. The power set of a set A will be denoted P(A). For a real-valued
quantity X, we denote by X+ the quantity max(0, X). The partial derivative with respect
to the first argument of a function g is denoted ∂1g.

We will often use the ‘capping function’ κ. Whenever a, b ∈ [0,∞], define κa,b : R→ R
by

κa,b(x) = max(min(x, b),−a) ∀x ∈ R .
That is, κa,b(x) is x capped below by −a and above by b. Note that x+ = κ0,∞(x).

4
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3 Quantiles, expectiles and Huber functionals

Although a predictive distribution F of some unknown future quantity Y contains a wealth
of information, in many contexts users or issuers of forecasts want a relevant point sum-
mary x of the predictive distribution. This can be generated by requesting a specific
statistical functional of F (such as its mean, median or some specified quantile), or by
specifying a scoring function S (such as the squared error scoring function) that will be
used to evaluate forecasts. In this section we focus functionals, and in particular on three
families of functionals: quantiles (which include the median), expectiles (which include
the mean) and Huber functionals (which nests quantiles and expectiles as edge cases).

Given an interval I ⊆ R and some space F of probability distributions in F(I), a sta-
tistical functional (or simply a functional) T on F(I) is a mapping T : F(I)→ P(I) (e.g.
[Horowitz and Manski, 2006], [Gneiting, 2011a]). Two important examples are quantiles
and expectiles.

Example 3.1. Suppose that I ⊆ R and α ∈ (0, 1). The α-quantile functional Qα : F(I)→
P(I) is defined by

Qα(F ) = {x ∈ I : lim
y↑x

F (y) ≤ α ≤ F (x)} , F ∈ F(I) .

For any F , Qα(F ) is a closed bounded interval of I. The two endpoints only differ
when the level set F−1(α) contains more than one point, so typically the functional is
single valued. The median functional Q1/2 arises when α = 1/2. If q is an α-quantile of
F and F is continuous at q then F (q)/(1 − F (q)) = α/(1 − α). Figure 1 illustrates the
quantiles Q1/2(F ) (the median) and Q0.7(F ), where F is the exponential distribution. The
aforementioned property is illustrated in the figure via the vertical dashed line segments,
whose lengths are in the ratio α : (1− α).

Example 3.2. Given an interval I ⊆ R, let F1(I) denote the space of probability measures
F(I) with finite first moment. The α-expectile functional Eα : F1(I)→ P(I) is defined by

Eα(F ) =

{
x ∈ I : α

∫ ∞
x

(y − x) dF (y) = (1− α)

∫ x

−∞
(x− y) dF (y)

}
, F ∈ F1(I) .

(3.1)
It can be shown there is a unique solution x to the defining equation, so expectiles are
single valued. Expectiles were introduced by [Newey and Powell, 1987] in the context of
least squares estimation and have recently attracted interest in financial risk management
[Bellini and Di Bernardino, 2017]. Expectiles share properties of both expectations as well
as quantiles, and nests the mean functional E1/2. Using integration by parts, one can show
that {x} = Eα(F ) if and only if

α

∫
[x,∞)∩I

(1− F (t)) dt = (1− α)

∫ x

(−∞,x]∩I
F (t) dt .

The latter equation gives a geometric interpretation of the α-expectile of F . It is the
unique point x such that the (1 − α)-weighted area of the region bounded by F and 0
on the interval (−∞, x] ∩ I is equal to the α-weighted area of the region bounded by F
and 1 on the interval [x,∞) ∩ I. Figure 1 illustrates this interpretation, via the areas of
the shaded regions, for the expectiles E1/2(F ) (i.e. mean) and E0.7(F ), where F is the
exponential distribution.

5
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Figure 1: The quantile Qα, expectile Eα and Huber quantile Hα (where Hα = Hα
a (F ),

a = 0.6) when α = 0.5 (left) and α = 0.7 (right) for the exponential distribution F (t) =
1 − exp(−t), t ≥ 0. The ratios of the areas of the two shaded regions, of the areas of
the two regions bounded by thick dashed lines, and of the lengths of the two dotted line
segments, are α : (1− α).

Equation (3.1) can be re-written as

Eα(F ) = {x ∈ I : αEF κ0,∞(Y − x) = (1− α)EF κ0,∞(x− Y )} . (3.2)

By modifying the parameters of the capping function κ0,∞, we introduce a new functional.

Definition 3.3. Suppose that a > 0, b > 0, α ∈ (0, 1) and that I ⊆ R is an interval.
Then the Huber functional Hα

a,b : F(I)→ P(I) is defined by

Hα
a,b(F ) = {x ∈ I : αEF κ0,a(Y − x) = (1− α)EF κ0,b(x− Y )} (3.3)

whenever F ∈ F(I). In the case when a = b, we simplify notation and write Hα
a (F ) for

Hα
a,a(F ). The special case H

1/2
a (F ) is called a Huber mean.

The Huber functional is named after Peter Huber, whose loss function

ha(u) =

{
1
2u

2 , |u| ≤ a
a|u| − 1

2a
2 , |u| > a

(3.4)

[Huber, 1964] now bears his name. The connection between the Huber functional and Hu-
ber loss will be made explicit in Section 4. Since the Huber functional is an example of a
generalised quantile (see [Bellini et al., 2014], who follow [Breckling and Chambers, 1988]),
Hα
a,b(F ) may also be called a Huber quantile of F . We note here that x ∈ Hα

a,b(F ) if and
only if EFV (x, Y ) = 0, where V : I × I → R is given by

V (x, y) = |1{x≥y} − α|κa,b(x− y) . (3.5)

The function V is an identification function [Gneiting, 2011a, Section 2.4] for Hα
a,b, and

will be used to establish important properties of the Huber functional.
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Figure 2: Left: Generalised Huber loss function hαa,b where α = 0.7, a = 2 and b = 1.
Centre: The Huber quantile H = Hα

a,b(F ) where α = 0.7, a = 2 and b = 1 for the
exponential distribution F (t) = 1 − exp(−t), t ≥ 0. The two shaded areas satisfy the
equation (1 − α)A1 = αA2. Right: A piecewise linear distribution F with endpoints H−

and H+ of the interval H
1/2
a (F ) where a = 1, endpoints Q− and Q+ of the median interval

Q1/2(F ), and the mean value E. The area of each shaded rectangle is equal.

As with expectiles, a routine calculation using integration by parts shows that x ∈
Hα
a,b(F ) if and only if

α

∫
[x,x+a]∩I

(1− F (t)) dt = (1− α)

∫
[x−b,x]∩I

F (t) dt . (3.6)

This gives a geometric interpretation of the Huber functional as the set of points x where
the (1 − α)-weighted area of the region bounded by F and 0 on [x − b, x] ∩ I equals the
α-weighted of the region bounded by F and 1 on [x, x+ a]∩ I. In the case when α = 1/2,
the two areas are equal. This is illustrated for the exponential distribution in Figure 1 for
Hα

0.6(F ) (when α = 1/2 and α = 0.7) and in Figure 2 for Hα
a,b(F ) (when α = 0.7, a = 2

and b = 1).

In light of the corresponding geometric interpretations of quantiles and expectiles,
and also the similarity between Equations (3.2) and (3.3), it should come as no surprise
that quantiles and expectiles are nested as edge cases in the family Hα

a of Huber means.
The following proposition makes this precise and lists several other basic properties of
the Huber functional. In what follows, F−1(w) denotes the closure in R of the level set
F−1(w), and R(F ) denotes the smallest closed interval of R that contains the support of
the measure F .

Proposition 3.4. Suppose that a > 0, b > 0, α ∈ (0, 1), I ⊆ R is an interval and
F ∈ F(I).

1. Then Hα
a,b(F ) is a nonempty closed bounded subinterval of I contained in R(F ).

2. If Hα
a,b(F ) = [c, d] for some c < d, then there exists w in (0, 1) such that F−1(w) =

[c− b, d+ a] and α = bw/(bw + a(1− w)).

7
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3. If there exists w in (0, 1) such that F−1(w) = [c0, d0] for some c0 and d0 satisfying
d0 − c0 > a+ b, then Hα

a,b(F ) = [c0 + b, d0 − a] where α = bw/(bw + a(1− w)).

4. lima↓0 min(Hα
a (F )) = min(Qα(F )) and lima↓0 max(Hα

a (F )) = max(Qα(F )).

5. If F has finite first moment then

lim
a→∞

min(Hα
a (F )) = lim

a→∞
max(Hα

a (F )) = Eα(F ) .

6. If F̃ ∈ F(I) and F (t) = F̃ (t) whenever t ∈ [min(Hα
a,b(F )) − b,max(Hα

a,b(F )) + a],

then Hα
a,b(F ) = Hα

a,b(F̃ ).

Part (1) is similar to [Bellini et al., 2014, Proposition 1(a)], whilst parts (4), (5) and
(6) were noted, in the case of finite discrete distributions when a = b and α = 1/2, by
[Huber, 1964]. The proof is given in the appendix.

Part (6) can be interpreted as saying that the Huber functional only depends on the
values of the CDF F away from its tails. In situations where the tail of a predictive
distribution is difficult to model, but a point summary describing its broad centre is
desired, this property is useful. In particular, the Huber functional is invariant to the
modification of F outside the interval [min(Hα

a,b(F )) − b,max(Hα
a,b(F )) + a]. In contrast,

modification of the tails of F will generally change its mean and expectile values, whilst
quantile values are invariant to modifications of F anywhere apart from at the quantile.

Parts (2) and (3) specify conditions on F for when Hα
a,b(F ) is multivalued. A corollary

is that if each level set of F on R(F ) has length not exceeding a+ b then Hα
a,b(F ) is single

valued for every α in (0, 1). Figure 2 illustrates a distribution F for which H
1/2
a (F ) is

multivalued whenever 0 < a < 3. In this particular case, F has a symmetric bi-modal

PDF, and also the property that E1/2(F ) ⊂ H
1/2
a (F ) ⊂ Q1/2(F ) whenever a > 0.

Note that while Hα
a (F ) is in some sense an intermediary between Qα(F ) and Eα(F ),

the right-hand side of Figure 1 illustrates that the Huber quantile does not always lie
between the corresponding quantile and expectile.

4 Scoring functions, consistency and elicitability

In this section we discuss scoring functions and their relationship to point forecasts and
functionals. Two key concepts are those of consistency and elicitability. How these con-
cepts relate to the Huber functional is the subject of Theorem 4.5, which is the first major
theoretical result of this report.

4.1 Scoring functions and Bayes’ rules

Definition 4.1. Suppose that I ⊆ R. A function S : I × I → R2 is a called a scoring
function if S(x, y) ≥ 0 for all (x, y) ∈ I × I with S(x, y) = 0 whenever x = y. The scoring
function S is said to be regular if (i) for each x ∈ I the function y 7→ S(x, y) is measurable,
and (ii) for each y ∈ I the function x 7→ S(x, y) is continuous, with continuous derivative
whenever x 6= y.

8
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The score S(x, y) can be interpreted as the loss or cost accrued when the point forecast
x is issued and the observation y realises. Examples of scoring functions include the
squared error scoring function S(x, y) = (x − y)2, the absolute error scoring function
S(x, y) = |x − y| and the zero–one scoring function S(x, y) = 1{|x−y|≥k}(x), for some
positive k. Only first two of these are regular, whilst the zero–one scoring function fails to
be regular on account of its discontinuity when |x− y| = k. The measurability condition
(i) is a technical condition that is satisfied by most (if not all) scoring functions that arise
in practice.

Huber loss (3.4) gives rise to the regular scoring function S(x, y) = ha(x − y). We
introduce a more general version.

Definition 4.2. Suppose that a > 0, b > 0 and α ∈ (0, 1). The generalised Huber loss
function hαa,b : R→ R is defined by

hαa,b(u) =


|1{u≥0} − α| 12u2 , −a ≤ u ≤ b
(1− α) b(u− 1

2b) , u > b

−αa(u+ 1
2a) , u < −a .

The classical Huber loss function given by Equation (3.4) is 2h
1/2
a,a . The same gener-

alisation is used by [Zhao et al., 2019] for robust expectile regression. Figure 2 shows the
graph of h0.72,1. Note that hαa,b is differentiable on R, with derivative

(hαa,b)
′(u) = |1{u≥0} − α|κa,b(u), u ∈ R . (4.1)

Generalised Huber loss gives rise to the regular scoring function S(x, y) = hαa,b(x− y).
Given a scoring function S, a forecast system that generates point forecasts can assessed

by computing its mean score S̄, where

S̄ =
1

n

n∑
i=1

S(xi, yi) ,

over a finite set of forecast cases {x1, . . . , xn} with corresponding observations {y1, . . . , yn}.
In this framework, if a number of competing forecast systems are being compared then
the one with the lowest mean score is the best performer. Thus, given a scoring function
S and predictive distribution F , an optimal point forecast is any x̂ in I that minimises
the expected score; that is,

x̂ = arg min
x

EFS(x, Y ) ,

provided that the expectation exists. A point forecast that is optimal in this sense is also
known as a Bayes’ rule [Gneiting, 2011a, Ferguson, 1967].

It has long been known that the Bayes’ rule under the squared error scoring function
S(x, y) = (x−y)2 is the mean of F , and under the absolute error scoring function S(x, y) =
|x− y| is any median of F . The Bayes’ rule under the asymmetric piecewise linear scoring
function

S(x, y) = |1{x≥y} − α||x− y| (4.2)

is a quantile Qα(F ) (e.g. [Ferguson, 1967]), whilst the Bayes’ rule under the asymmetric
quadratic scoring function

S(x, y) = |1{x≥y} − α|(x− y)2 (4.3)

9
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is the expectile Eα(F ) [Newey and Powell, 1987, Gneiting, 2011a].

The Bayes’ rule under the generalised Huber loss scoring function S(x, y) = hαa,b(x−y)
can be found by looking for solutions x to the equation ∂1EFS(x, Y ) = 0. If interchanging
differentiation and integration can be justified then EF∂1S(x, Y ) = 0. Using Equation
(4.1), one obtains EFV (x, Y ) = 0, where V is the identification function given by (3.5).
This implies that x ∈ Hα

a,b(F ). That is, at least formally, the Bayes’ rule under the
generalised Huber loss scoring function is the corresponding Huber functional of F . A
precise statement will be given in the next subsection.

4.2 Consistency and elicitability

Whenever a point forecast request specifies what functional of the predictive distribution is
being sought, the scoring function used to evaluate the point forecast should be appropriate
for that functional.

Definition 4.3. [Gneiting, 2011a, Murphy and Daan, 1985] Suppose that I ⊆ R. A scor-
ing function S : I × I → R is said to be consistent for the functional T relative to a class
F of probability distributions on I if

EFS(t, Y ) ≤ EFS(x, Y ) (4.4)

for all probability distributions F in F , all t in T(F ) and all x in I. The functional T is
said to be strictly consistent relative to the class F if it is consistent relative to the class
F and if equality in (4.4) implies that x ∈ T(F ).

Evaluating point forecasts with a strictly consistent scoring function rewards forecast-
ers who give truthful point forecast quotes from carefully considered predictive distribu-
tions. This is because the requested functional of the predictive distribution coincides
with the optimal point forecast (or Bayes’ rule).

The families of consistent scoring functions for quantiles and expectiles each have a
standard form. Subject to slight regularity conditions, a scoring function S is consistent
for the quantile functional Qα if and only if S is of the form

S(x, y) = |1{x≥y} − α||g(x)− g(y)| , (4.5)

where g is a non-decreasing function [Gneiting, 2011b, Thomson, 1978, Saerens, 2000].
Moreover, if g is strictly increasing then S is strictly consistent. The standard asymmetric
piecewise linear scoring function (4.2) for quantiles (which includes, up to a multiplicative
constant, the absolute error scoring function for the median) is recovered from Equation
(4.5) with the choice g(x) = x.

Subject to standard regularity conditions, a scoring function S is consistent for the
expectile functional Eα if and only if S is of the form

S(x, y) = |1{x≥y} − α|
(
φ(y)− φ(x) + φ′(x)(x− y)

)
, (4.6)

where φ is a convex function with subgradient φ′ [Gneiting, 2011a]. Moreover, if φ is
strictly convex then S is strictly consistent. The standard asymmetric quadratic scoring
function (4.3) for expectiles (including, up to a multiplicative constant, the squared error
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scoring function for the mean) is recovered from (4.6) by taking φ(x) = x2. When α = 1/2,
the function S of (4.6) is known as a Bregman function.

We will show that consistent scoring functions for the Huber functional also have a
standard form. Before doing so, we introduce a critical concept related to the evaluation
of point forecasts.

Definition 4.4. [Lambert et al., 2008] A statistical functional T is said to be elicitable
relative to a class F of probability distributions if there exists a scoring function S that
is strictly consistent for T relative to F .

For example, quantiles are elicitable relative to the class F(R), while expectiles are elic-
itable relative to the class of distributions in F(R) with finite first moment [Gneiting, 2011a].
It is worth noting that some statistical functionals are not elicitable, including the sum
of two distinct quantiles and conditional value-at-risk, a popular risk measure in finance
[Gneiting, 2011a].

We turn now to the Huber functional. The main thrust (subject to appropriate reg-
ularity conditions) is that the Huber functional is elicitable, and that S is consistent for
Hα
a,b if and only if S is of the form

S(x, y) = |1{x≥y} − α|
(
φ(y)− φ(κa,b(x− y) + y) + κa,b(x− y)φ′(x)

)
, (4.7)

where φ is a convex function with subgradient φ′. Moreover, S is strictly consistent if φ
is strictly convex. The generalised Huber loss scoring function S(x, y) = hαa,b(x− y) arises

from Equation (4.7) with the choice φ(t) = t2. The following gives a precise statement.

Theorem 4.5. Suppose that I ⊆ R is an interval and that a > 0, b > 0 and α ∈ (0, 1).

1. The Huber functional Hα
a,b is elicitable relative to the class of probability measures

F(I) when I is bounded or semi-infinite, and elicitable relative to the class of prob-
ability measures F(I) with finite first moment when I = R.

2. Suppose that φ : I → R is convex on I. Then the function S : I × I → R, defined by
Equation (4.7), is a consistent scoring function for the Huber functional Hα

a,b relative
to the class F(I) of probability measures F for which both EF [φ(Y )− φ(Y − a)] and
EF [φ(Y ) − φ(Y + b)] exist and are finite. If, additionally, φ is strictly convex then
S is strictly consistent for Hα

a,b relative to the same class of probability measures.

3. Suppose that the scoring function S : I × I → R is regular. If S is consistent for
the Huber functional Hα

a,b relative to the class of probability measures in F(I) with
compact support, then S is of the form (4.7) for some convex function φ : I → R.
Moreover, if S is strictly consistent then φ is strictly convex.

The proof is given in the appendix.
The general form (4.7) for the consistent scoring functions of the Huber functional

yields, as edge cases, the general form for the consistent scoring functions of expectiles
and quantiles. To be precise, let SH,φ

a denote the scoring function S given by (4.7) when
a = b, and let SE,φ and SQ,g denote the consistent scoring functions of Equations (4.6)

and (4.5) respectively. The relationship between SH,φ
a and SE,φ is straightforward: we

have the pointwise limit
lim
a→∞

SH,φ
a (x, y) = SE,φ(x, y) . (4.8)
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For the other end of the spectrum we consider the rescaled consistent scoring function
SH,φ
a /a, and obtain the pointwise limit

lim
a↓0

SH,φ
a (x, y)/a = SQ,φ′(x, y) , (4.9)

where φ′ is nondecreasing because φ is convex. Importantly, the relevant regularity con-
ditions ensure that every non-decreasing function g in the representation (4.5) is the sub-
derivative of some suitable convex φ.

The consistent scoring functions for the Huber functional thus show a mixture of the
properties of the consistent scoring functions for quantiles and expectiles. Focusing on the

functional H
1/2
a for positive a, the only consistent scoring function (up to a multiplicative

constant) on R × R that only depends on the difference x − y between the forecast and

observation is the classical Huber loss scoring function (x, y) 7→ h
1/2
a,a (x − y). This is

because the only Bregman function (up to a multiplicative constant) that has the same
property for E1/2 is the squared error scoring function (x, y) 7→ (x − y)2 [Savage, 1971].
Hence, apart from multiples of classical Huber loss, other consistent scoring functions for

H
1/2
a on R penalise under- and over-prediction asymmetrically. One such example is the

exponential family

Sλ;a(x, y) =


1
λ2

(
exp(λy)− exp(λx)

)
− 1

λ exp(λx)(y − x) , |x− y| ≤ a
1
λ2

(
exp(λy)− exp(λ(y + a))

)
+ a

λ exp(λx) , x− y > a
1
λ2

(
exp(λy)− exp(λ(y − a))

)
− a

λ exp(λx) , x− y < −a ,
(4.10)

parameterised by λ ∈ R and obtained from (4.7) via φ(t) = 2 exp(λt)/λ2. These are
analogous to the exponential family of Bregman functions considered by [Patton, 2020].

5 Mixture representations and Murphy diagrams

The main theoretical tool presented in this section is the mixture representation for con-
sistent scoring functions of the Huber functional (Theorem 5.2). Mixture representations
were introduced for quantiles and expectiles by [Ehm et al., 2016] and have several very
useful applications, including providing insight into forecast rankings.

5.1 Ranking of forecasts

As mentioned in Section 4.1, point forecasts from two competing forecast systems A and
B can be ranked by calculating their mean scores S̄A

n and S̄B
n over a finite number n

of forecast cases for some scoring function S. If the forecast cases are independent, a
statistical test for equal predictive performance can be based on the statistic tn, where

tn =
√
n
S̄A
n − S̄B

n

σ̂n
and σ̂2n =

1

n

n∑
i=1

(S(xAi , yi)− S(xBi , yi))
2 (5.1)

for forecasts {xAi } and {xBi } and corresponding realisations {yi}. Corresponding p-values
are computed and if the null hypothesis is rejected then A is preferred if tn < 0 and B
is preferred otherwise [Gneiting and Katzfuss, 2014, Section 3.3]. Unfortunately, forecast
rankings and the results of hypothesis tests can depend on the choice of consistent scoring
function [Ehm et al., 2016, pp. 506, 515–516], as we now illustrate.
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Example 5.1. Two forecast systems, BoM and OCF, produce point forecasts for the daily
maximum temperature at Sydney Observatory Hill. The OCF system generates forecasts
from a blend of bias-corrected numerical weather prediction forecasts. The BoM forecast
is issued by meteorologists who have access to various information sources, including OCF.
We consider forecasts for the period July 2018 to June 2020 with a lead time of one day.
See Figure 3 for a sample time series of BoM and OCF forecasts with observations.

Suppose that these forecasts are targeting the Huber mean H
1/2
3 , and make the simpli-

fying assumption that successive forecast cases are independent. If the consistent scoring

function S(x, y) = 2h
1/2
3,3 (x−y) is used, then the mean score for BoM is lower than the mean

score for OCF, and with a p-value of 6.52 × 10−4 the null hypothesis of equal predictive
performance is rejected at the 5% significance level in favour of BoM forecasts. However,
if the consistent scoring function S2;3 defined by Equation (4.10) is used, then OCF has
the lower mean score, albeit with a p-value of 0.333 that upholds the null hypothesis.

5.2 Mixture representations

In this subsection we state mixture representations for consistent scoring functions of the
Huber functional. Practical applications of this theoretical result will follow in subsequent
subsections.

In general, the choice of subgradient φ′ in the representation (4.7) is not unique. To
facilitate precise mathematical statements a special version of φ′ will be chosen. Let I
denote the class of all left-continuous non-decreasing functions on R, and let C denote the
class of all convex functions φ : R→ R with subgradient φ′ in I. This last condition will
be satisfied if φ′ is chosen to be the left-hand derivative of φ. Denote by SHα,a,b the class of

scoring functions S of the form (4.7) such that φ ∈ C. For most practical purposes, SHα,a,b
can be identified with the class consistent scoring functions for the Huber functional on
R.

Theorem 5.2. Every member S of the class SHα,a,b has a representation of the form

S(x, y) =

∫ ∞
−∞

SH
α,a,b,θ(x, y) dM(θ), (x, y) ∈ R2 , (5.2)

where

SH
α,a,b,θ(x, y) =


(1− α) min(θ − y, b) if y ≤ θ < x

αmin(y − θ, a) if x ≤ θ < y

0 otherwise

(5.3)

and M is a non-negative measure. The mixing measure is unique and satisfies dM(θ) =
dφ′(θ) whenever θ ∈ R, where φ′ is the left-hand derivative of the convex function φ in the
representation (4.7). Furthermore, M(x)−M(y) = ∂2S(x, y)/(1− α).

The proof is given in the appendix and is a simple adaptation of the proof of the
analogous results for expectiles and quantiles [Ehm et al., 2016, Theorem 1].

Each function SH
α,a,b,θ of Theorem 5.2 is called an elementary scoring function for the

Huber functional, and also belongs to SHα,a,b (use Equation (4.7) with the choice φ(t) =
(t− θ)+ and φ′(t) = 1{θ<t}). So Theorem 5.2 essentially says that each consistent scoring
function for the Huber functional can be expressed as a weighted average of elementary
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scoring functions. The representation (5.2) holds pointwise via the same argument for
expectiles [Ehm et al., 2016, p. 510]. Moreover, when a = b, the mixture representations
for the consistent scoring functions of expectiles and quantiles emerge as edge cases of
Theorem 5.2 by taking limits as a→∞ and as a ↓ 0 and using the dominated convergence
theorem. Details are given in Remark A.1.

5.3 Economic interpretation of elementary scoring functions

The elementary scoring functions SH
α,a,b,θ admit an economic interpretation of the loss,

relative to actions based on a perfect forecast, of an investment decision with fixed costs,
differential tax rates for profits versus losses, and where profits and losses are capped. To
illustrate, we give two examples. The first is an adaptation of the interpretation for the
elementary scoring functions of expectiles [Ehm et al., 2016, p. 513]. The second illustrates
how the Huber functional and its elementary scoring functions can arise in the context of
investment decisions based on weather forecasts.

Example 5.3. Suppose that Alexandra considers investing a fixed amount θ in a start-up
company in exchange for an unknown future amount y of the company’s profits or losses.
Additionally, Alexandra takes out an option to set a limit b on losses she could incur but
which also imposes a limit a on the profits she could receive. Alexandra will make a profit
if and only if y > θ, and so adopts the decision rule to invest if and only if her point
forecast x of y exceeds θ. Her pay-off structure is as follows:

1. If Alexandra refrains from the deal, her pay-off will be 0, independent of the outcome
y.

2. If Alexandra invests and y ≤ θ realises then her payout is negative at −(1 −
rL) min(θ − y, b). Here min(θ − y, b) is the monetary loss, bounded by b, and the
factor 1 − rL accounts for Alexandra’s reduction in income tax with rL ∈ [0, 1)
representing the deduction rate.

3. If Alexandra invests and y > θ realises then her pay-off is positive at (1−rG) min(y−
θ, a), where rG ∈ [0, 1) denotes the tax rate that applies to her profits.

The top matrix in Table 1 shows Alexandra’s pay-off under her decision rule. The
positively-oriented pay-off matrix can be reformulated as a negatively oriented regret ma-
trix, by considering the difference between the pay-off for an (hypothetical) omniscient
investor who has access to a perfect forecast and the pay-off for Alexandra. For example,
if x ≤ θ and y > θ realises, then the omniscient investor’s pay-off is (1− rG) min(y − θ, b)
while Alexandra’s pay-off is 0, and so Alexandra’s regret is (1 − rG) min(y − θ, b). The
bottom matrix of Table 1 is Alexandra’s regret matrix, which up to a multiplication factor
is the elementary score SH

α,a,b,θ(x, y). So to minimise regret, Alexandra should invest if and
only if x > θ, where x = Hα

a,b(F ), F is Alexandra’s predictive distribution of the future

value of the investment and α = (1− rG)/(2− rL − rG). The point forecast x = H
1/2
a (F )

arises if profits and losses are capped by the same value and if the rates rG and rL are
equal.

Example 5.4. Hannah runs a business selling ice creams from a mobile cart at a sports
stadium. Historically, there is an approximately linear relationship between the volume
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Table 1: Overview of pay-off structure for Alexandra’s decision rule to invest if and only
if x > θ.

y ≤ θ y > θ

Monetary payoff
x ≤ θ 0 0
x > θ −(1− rL) min(θ − y, b) (1− rG) min(y − θ, a)

Score (regret)
x ≤ θ 0 (1− rG) min(y − θ, a)
x > θ (1− rL) min(θ − y, b) 0

of ice cream sales on any given afternoon and the observed daily maximum temperature,
so that the profit p from sales is modelled by p = ky + c, where y is the observed daily
maximum temperature, k > 0 and c ∈ R. Additionally, 0 ≤ p ≤ a for some positive a,
since total sales are limited by cart capacity, while any unsold units can be sold at a later
date. If Hannah chooses to sell ice creams on any given afternoon, she must also pay a
fixed cost f (staff wages and stadium fees). If model assumptions are correct, Hannah will
make a profit if and only if ky + c > f . So she adopts the decision rule to sell ice creams
on any given afternoon if and only if her point forecast x of the maximum temperature
exceeds the decision threshold θ, where θ = (f − c)/k. Her pay-off structure is as follows.

1. If Hannah does not sell ice creams then her pay-off is 0.

2. If Hannah sells ice creams and y > θ then her profit after tax is (1 − rG) min(ky +
c− f, a− f), where rG ∈ [0, 1) denotes the tax rate. Her profit can be rewritten as
(1− rG)kmin(y − θ, (a− f)/k).

3. If Hannah sells ice creams and y < θ then her loss after tax deductions is (1 −
rL) min(f − (ky+ c), f), where rG ∈ [0, 1) denotes the deduction rate, and losses are
capped by f since unsold ice creams go back into storage. Her loss can be rewritten
as (1− rL)kmin(θ − y, f/k).

As with Example 5.3, these outcomes can be converted to a regret matrix, which up to a
multiplication factor is the elementary score SH

α,(a−f)/k,f/k,θ(x, y) where α = (1− rG)/(2−
rL− rG). Consequently, her optimal decision rule is to sell ice creams if and only if x > θ,
where θ = (f−c)/k, x ∈ Hα

(a−f)/k,f/k(F ), F is her predictive distribution of the maximum

temperature and α = (1− rG)/(2− rL − rG).

The essential features of Example 5.4 also arise in the context of rainfall storage and
water trading. Any profits made by selling harvested water are capped by storage capacity.
The predicted volume v of water that is collected from any rainfall event can be modelled by
v = ky+c, where y is the predicted rainfall at a representative point within the catchment,
c is catchment initial loss and k is determined by catchment size and continuing loss.

5.4 Forecast dominance, Murphy diagrams and choice of consistent scor-
ing function

We return to the problem of forecast rankings with the notion of forecast dominance
[Ehm et al., 2016, Section 3.2]. We say that forecast system A dominates forecast system
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B for point forecasts targeting a specific Huber functional if the expected score of point
forecasts from A is not greater than the expected score of point forecasts from B, for every
consistent scoring function. In practice this is impossible to check directly because the
family of consistent scoring functions, parameterised by φ ∈ C, is very large. However,
by the mixture representation of Theorem (5.2), one need only test for dominance over
the family, parametrised by θ ∈ R, of elementary functions. In empirical situations, this
is further reduced to checking forecast dominance for finitely many θ. In what follows,
we consider tuples (xiA, xiB, yi) consisting of the ith point forecast from systems A and B
along with the corresponding observation yi.

Corollary 5.5. Suppose that α ∈ (0, 1), a > 0 and b > 0. The forecast system A
empirically dominates B for predictions targeting Hα

a,b if

1

n

n∑
i=1

SH
α,a,b,θ(xiA, yi) ≤

1

n

n∑
i=1

SH
α,a,b,θ(xiB, yi)

whenever θ ∈ ⋃{xiA, xiB, yi, yi − a, yi + b : 1 ≤ i ≤ n} and in the left-hand limit as θ ↑ θ0,
where θ0 ∈

⋃{xiA, xiB, : 1 ≤ i ≤ n}.

To see why, note that the score differential θ 7→ di(θ) for the ith forecast case is
piecewise linear and right-continuous, and is zero unless θ lies between xiA and xiB. The
only possible discontinuities are at xiA and xiB, and the only possible changes of slope are
at yi, yi − a and yi + b.

An empirical check for forecast dominance is aided with the use of a Murphy diagram
[Ehm et al., 2016, Section 3.3], which is a plot showing the graph of

θ 7→ 1

n

n∑
i=1

SH
α,a,b,θ(xi, yi)

for each forecast source, computed at each of the points θ of Corollary 5.5. The top left
of Figure 3 presents the Murphy diagram for three different forecasts targeting the Huber

mean H
1/2
3 of the daily maximum temperature at Sydney Observatory Hill (July 2018 to

June 2020). The OCF and BoM forecasts were discussed in Example 5.1. For any given
day, the Climate forecast is the mean of 46 observations, sampled from the previous 15
days and from a 31 day period this time last year centred on the day in question. A lower
mean score is better.

The graph in the top right of Figure 3 represents forecast performance as a skill score
with respect to two reference forecasts: the perfect forecast (skill score = 1) and the
Climate forecast (skill score = 0). The difference in mean elementary scores between OCF
and BoM forecasts is presented in the bottom left, with pointwise 95% confidence intervals.
Neither of these forecasts dominates the other.

Returning to Example 5.4, if Hannah’s decision rule is to sell ice creams if and only

if the H
1/2
3 point forecast x exceeds 30◦C, then Hannah should base her decisions on the

BoM forecast, since its mean elementary score, which is proportional to economic regret,
is lowest (see the top left of Figure 3 where θ = 30). But if her fixed investment costs f
changed, then so would her decision threshold θ, and the Murphy diagram indicates which
forecast system historically performed better at the new threshold.
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Figure 3: Competing forecast systems targeting the Huber mean H
1/2
3,3 for the daily maxi-

mum temperature at Sydney Observatory Hill (July 2018 to June 2020). Top left: Murphy
diagram of mean elementary scores. Top right: Murphy diagram of elementary skill scores.
Bottom left: mean elementary score difference of OCF and BoM with pointwise 95% con-
fidence intervals (less than 0 indicates that BoM is preferable). Bottom right: Sample of
the forecast–observation time series.

The mixture representation and Murphy diagram also gives insight into why the two
different scoring functions of Example 5.1 lead to different forecast rankings. The classical

Huber loss scoring function S(x, y) = 2h
1/2
3,3 (x−y) is obtained from Equation (4.7) with the

choice φ(t) = t2. The corresponding mixing measure is dM(θ) = 2 dθ, implying that every
elementary scoring function in the mixture representation (5.2) is weighted equally, and
also that the area underneath each graph in the Murphy diagram (top left of Figure 3) is
twice the mean Huber loss S̄ for that forecast system. On the other hand, the exponential
scoring function S2;3 is obtained from Equation (4.7) with the choice φ(t) = exp(2t)/2.
In this case dM(θ) = 2 exp(2θ) dθ and so mean elementary scores in the corresponding
mixture representation are weighted heavily for higher values of θ. Hence when scored by
S2;3, a slight over-forecast of 40.4◦C by BoM on 19 December 2019 (OCF forecast 35.4◦C
and the observation was 39.3◦C) was penalised substantially more heavily than the OCF
under-forecast, resulting in a higher mean score S̄2;3 for BoM than OCF.

Finally, we consider the choice of consistent scoring function for Huber quantile point
predictions in the situation where the point forecast serves the needs of a diverse commu-
nity of users. Classical Huber loss, obtained when φ(t) = t2, applies equal weight to all
θ. For everyday use, this choice of φ may be justified by the desire to weight all decision
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thresholds θ equally. On the other hand, for weather forecasts there may be a desire, from
a public risk perspective, to give greater weight to values of θ that lie in the hazardous
climatological extremes, so that competing forecast system candidates are evaluated with
that in mind. For maximum temperature forecasts, the mixing measure dM(θ) = φ′′(θ) dθ,
where

φ′′(θ) =


(5− θ) + 1 , θ ≤ 5

1 , 5 < θ < 35

(θ − 35) + 1 , θ ≥ 35 ,

puts increasing weight on decision thresholds below 5◦C and above 35◦C. This yields the
convex function

φ(θ) =


1
6(5− θ)3 + 1

2θ
2 , θ ≤ 5

1
2θ

2 , 5 < θ < 35
1
6(θ − 35)3 + 1

2θ
2 , θ ≥ 35 .

and the corresponding consistent scoring function S can be computed from Equation (4.7).
With this S, BoM maximum temperature forecasts for Sydney outperform those of OCF,
and with a p-value of 1.48 × 10−3 the null hypothesis of equal predictive performance is
rejected at the 5% significance level.

6 Robust verification of point forecasts for the mean

In parametric estimation, there is often a trade-off between robustness of and bias in the
estimate, particularly in the presence of contaminated data [Huber, 1964]. These tensions
also arise in the evaluation of point forecasts. The squared error scoring function, whilst
consistent for point forecasts targeting the mean functional, is sensitive to large measured
errors, which may be due to faulty measurements rather than poor forecasts. We therefore
explore the use of Huber loss as a robust scoring function.

Three families of distributions will be used to generate synthetic data: the Normal
distribution N (µ, σ2), the skew normal distribution SN (ξ, ω, ν) with location ξ, scale ω
and shape ν, and the Beta distribution B(r, s) with shape parameters r and s. The skew
normal distribution is right skewed if ν > 0, normal if ν = 0 and left skewed if ν < 0.
We also use the notion that a predictive distribution is ideal relative to an information
set if it makes the best possible use of that information [Gneiting and Katzfuss, 2014,
pp. 129–130].

Example 6.1. Suppose that the daily maximum temperature Y at a given location has
conditional distribution Y |(ξ, ω, ν) ∼ SN (ξ, ω, ν), where

ξ ∼ SN (19, 6, 20)

ω ∼ 1.4 +B1 max(20, ξ)/10 , B1 ∼ B(2, 5)

ν ∼ 40B2 − 20 , B2 ∼ B(1.5, 1.5 max(20, ξ)/20) .

The PDF of Y is the uncontaminated distribution in the top left of Figure 4. This set-
up has the following interpretation. On any given day, the maximum temperature has
a skew normal distribution. Right and left skewed distributions are both possible, but
if the temperature is likely to be high then odds favour a left skewed distribution. The
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Figure 4: Top left: PDFs of uncontaminated observations Y and contaminated obser-
vations Y m. Bottom left: PDFs of the difference between IdealMean and competitor
forecasts. Right: The likelihood that Harry will switch from IdealMean to a competitor

forecast, depending on the observation type and scoring function Sa(x, y) = h
1/2
a,a (x − y)

(squared loss when a =∞ and absolute loss when a = 0).

distribution on any given day also tends to be sharper for lower temperatures. This models
the maximum temperature distribution for a site slightly inland of the New South Wales
coast, where variability in the arrival of the sea breeze increases maximum temperature
volatility during warmer months.

In addition to uncontaminated realisations Y we consider measured observations Y m,
of which 5% are contaminated by a measurement ‘spike’ of at least +5◦C. To be precise,
Y m = Y + 5UV , where P(U = 1) = 0.05 (the contamination rate), P(U = 0) = 0.95 and
V is the exponential distribution with CDF t 7→ 1 − exp(−0.8t), t ≥ 0. The PDF of Y m

is also shown in Figure 4.

Harry pays Nick a handsome sum for accurate point forecasts of maximum temperature
targeting the mean functional. Nick has access to the parameter set (ξ, ω, ν) and, for
any given day, forecasts the ideal predictive distribution F ∼ SN (ξ, ω, ν) relative to
that information set and quotes its mean E1/2(F ). This is the IdealMean forecast. Five
other forecasters have covertly obtained access to Nick’s predictive distribution. One
forecaster attempts to disguise blatant plagiarism by adding random noise to Nick’s quote
(this is the NoisyMean forecast E1/2(F ) +N (0, 0.5)). Another forecaster compares Nick’s
point forecasts to a sample of (contaminated) observations, and issues the DebiasedMean
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E1/2(F ) + 0.3 (which is close to the optimal correction 0.314). Three other forecasters
suspect that Harry is aware that the observations are contaminated and may rank forecasts
with a scoring function that is less sensitive to outliers. One quotes the Median Q1/2(F ),

another the Huber1.5 H
1/2
1.5 (F ) and the third the Huber2.5 H

1/2
2.5 (F ). The PDFs of their

difference from IdealMean is shown in the bottom left of Figure 4. Note that DebiasedMean
is furthest, on average, from the ideal forecast.

Nick’s contract with Harry is about to expire. Harry will switch from the IdealMean to
a competitor if the null hypothesis that IdealMean is at least as good as the competitor is
rejected at the 5% significance level, using a one-tailed test with the statistic of Equation
(5.1) for two years of forecast data. To estimate the likelihood that the null hypothesis is
rejected, we generate 4000 samples of 365×2 independent (Y, Y m, F ) tuples, and determine
the test outcome for each sample. Results are obtained for both uncontaminated and

contaminated observations, and for four different scoring functions Sa(x, y) = 2h
1/2
a,a (x−y),

where a ∈ {0, 1.5, 2.5,∞} and the cases a = 0 and a = ∞ are the absolute error and
squared error scoring functions respectively. The likelihood of Harry rejecting the null
hypothesis (i.e. switching) is shown in the right of Figure 4.

The results show that for uncontaminated observations, the likelihood of switching
from IdealMean to a competitor is low when using the squared error scoring function
(a = ∞), as one should expect since it is strictly consistent for the mean. However, the
likelihood of switching to DebiasedMean (the competitor which is furthest from the ideal)
is 77% when using the squared error scoring function with the contaminated data set.
Of the four scoring functions considered, the one with parameter a = 2.5 performs best
because the likelihood of switching from IdealMean is generally low for both observation
sets across all competitors. Nonetheless, the chance of switching to Huber2.5 whilst using
this scoring function with contaminated data is 16%. This risk may be tolerable since
Huber2.5 is, on average, the competing forecast that is closest to the IdealMean.

We conclude this section with a general discussion of issues faced by a practitioner who
wants to use generalised Huber loss for robust evaluation of point forecasts. In situations
where forecasts targeting the mean are being evaluated with contaminated data, a good

choice of tuning parameter a for the scoring function S(x, y) = h
1/2
a,a (x − y) depends on

the contamination rate ε, contamination distribution and the distribution of true errors of
all competing forecasts. In practice, these are not precisely known, and if the estimated
distribution of true errors is substantially asymmetric then using the classical Huber loss
scoring is likely to be suboptimal. In the case where the distribution of true errors is
approximately symmetric, empirical investigation of the author suggests that a be chosen
such that (i) the bulk of (true) errors lies in [−a, a] (say, a is larger than some robust
measure of error spread), and (ii) so that a is somewhat less than the magnitude of
typical contamination spikes (which may be estimated using knowledge of the measurement
process).

We illustrate these recommendations using the simulation of Example 6.1. For (i), the
absolute median deviation of forecast errors x−y from a random sample of 2×365 forecast–
observation cases (using contaminated data) ranged from 1.19 (for Median forecasts) to
1.33 (for IdealMean and DebiasedMean forecasts). Since absolute median deviation is a
robust measure of spread, these results may be taken as proxies for the spread of the true
errors. So in this example, it is recommended that a is at least 1.33. For (ii), suppose that
some investigation of a sample of large errors suggest that observations spikes exceeding 6
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occur sporadically. Then it is recommended that a is chosen to be somewhat less than 6.

We now turn attention to robust verification of forecasts targeting the α-expectile.
For simplicity, suppose that contaminating measurement spikes are positive (as in Exam-
ple 6.1), that α > 1/2 and that the asymmetric quadratic scoring function (4.3) is used
to assess forecast performance. In this case, apparent under-prediction forecast cases are
penalised more heavily than apparent over-prediction forecast cases, and so forecasts sys-
tems that have a suitable over-prediction bias (relative to true realisations) will benefit
from contaminated data. This leads to a more pronounced distortion of forecast rankings
for higher values of α compared with case α = 1/2. Unpublished empirical experiments of
the author are consistent with this. However, this is not easily remedied. An alternative
scoring function is the generalised Huber loss scoring function S(x, y) = hαa,b(x−y). Three
parameters must be specified and it is not necessarily the case that the α parameter speci-
fying of the target expectile should equal the α parameter of generalised Huber loss scoring
function. Moreover, it is harder to distinguish statistically between the small proportion
of true observations that correspond to mild under-prediction forecast cases and a similar
size of contaminated observations that give the appearance of mild under-prediction.

Finally, we note that rankings of forecasts that target the Huber functional Hα
a,a (when

scored by S(x, y) = hαa,b(x− y)) are less prone to distortion from contaminated data than
forecasts targeting the expectile Eα (when scored by the asymmetric quadratic scoring
function). The risk of distortion decreases as a ↓ 0, and the situation with forecasts
targeting Qα is even more robust. Unpublished empirical experiments of the author are
consistent with this.

Further light could be cast on the problem of tuning parameter selection and robust
forecast evaluation by using insights from the theory of robust parameter estimation.

7 Conclusion

We have defined the Huber functional in such a way that it is the set of optimal point fore-
casts for minimising the expected score under the generalised Huber loss scoring function.
The Huber functional is an intermediary between quantiles and expectiles, which it nests
as edge cases. The Huber functional incorporates more information about a predictive
distribution F than quantiles, yet unlike expectiles it is not sensitive to the behaviour
of F at its tails. We have shown that the Huber functional is elicitable, given a char-
acterisation of its consistent scoring functions and stated the mixture representation for
those scoring functions. These theoretical results enable the use of the Huber functional
and its associated consistent scoring functions within a theoretically sound framework
for point forecasting and evaluation (see [Gneiting, 2011a], [Gneiting and Katzfuss, 2014],
[Ehm et al., 2016] and the references therein). Moreover, the Huber functional is shown to
arise naturally within decision theory for a broad class of investment problems, and within
this context the mixture representation facilitates some justification for the choice of con-
sistent scoring function when point forecasts targeting the Huber functional are utilised
by a heterogeneous user group. Finally, we have shown that Huber loss can be used as
a robust scoring function of forecasts targeting the mean in situations with contaminated
observational data, noting that rankings of forecasts that target the Huber mean are more
resilient to distortion in such situations.

Many organisations, including meteorological agencies, have traditionally issued point
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forecasts that are not well-defined, and that are consumed by a very broad user group.
Where there is appetite to clarify forecast definitions, and where it is desirable that point
forecasts target some ‘middle’ point of the predictive distribution, the Huber mean pro-
vides a good candidate functional, as it can be scored using a consistent scoring function
that is more robust to contaminated data than the mean, and it incorporates more infor-
mation from the predictive distribution than the median. The classical Huber loss scoring

function S(x, y) = h
1/2
a,a (x − y) is a natural choice for a consistent scoring function of the

Huber mean, as it favours all user-decision thresholds equally (in the sense discussed in
Section 5.4). Nonetheless, if it is desirable that forecast performance at some user-decision
thresholds is more important than at others, the mixture representation provides a method
for generating the appropriate scoring function.
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A Proofs

Proof of Proposition 3.4. We first prove the proposition for the case when I = R.

In light of the essential equivalence of Equations (3.3) and (3.6), define Ga,b : R → R
by

Ga,b(u) = (1− α)

∫ u

u−b
F (t) dt− α

∫ u+a

u
(1− F (t)) dt, u ∈ R. (A.1)

Where then is no confusion, we will drop the subscripts and simply be denote the func-
tion by G. Since the CDF F is nonnegative and nondecreasing, it follows that G is a
nondecreasing function on R. Moreover, G is also continuous on R.

First we will show that the set of zeroes of G is nonempty and lies in R(F ), which
will establish that Hα

a,b(F ) is a nonempty subset of R(F ). Since G is continuous and
nondecreasing on R, it suffices to show that that G takes at least one positive and one
negative value in any neighbourhood of R(F ), which will also establish that the zero set
is bounded.

Suppose that ε > 0. If R(F ) has finite left-endpoint r0 then

G(r0 − ε) = −α
∫ r0−ε+a

r0−ε
dt+ α

∫ r0−ε+a

r0

F (t) dt

≤ −αa+ α(a+ ε)

< 0 .
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Otherwise, let η = αa/((1−α)b+αa) and note that 0 < η < 1. So there exists v in R(F )
such that F (u) < η whenever u ≤ v. So

G(v − a) < (1− α)bη + αaη − αa = 0 .

Similarly, if R(F ) has a finite right-endpoint r1 then G(r1 + ε) > 0. Otherwise, there
exists w in R(F ) such that F (u) > η whenever u ≥ w. So

G(w + b) > (1− α)bη + αaη − αa = 0 .

This shows that G has at least one zero, and since ε is arbitrary and G is nondecreasing
and continuous, all the zeroes are contained in the interval R(F ), and the zero set is a
closed bounded interval.

To prove parts (2) and (3) when I = R, we note that the zero set of G is [c, d]
where c < d only if there is a constant w ∈ (0, 1) such that F (t) = w whenever t ∈
{⋃((u−b, u)∪(u, u+a)) : u ∈ [c, d]}. The closure of this latter set is precisely [c−b, d+a].
Moreover, if u is any such zero of G, (A.1) implies that

0 = G(u) = (1− α)bw + αaw − αw.

Rearranging gives α = bw/(bw + a(1− w)) as required.
To prove part (4), fix α and F . Define q0 and q1 by

q0 = min(Qα(F )) and q1 = max(Qα(F )) .

Suppose that a > 0. Denoting limy↑x F (y) by F (x−), note that

F (q−i ) ≤ α ≤ F (qi) , F (q0 − a) < α and F (q1 + a) > α . (A.2)

Therefore

Ga,a(q0 − a) ≤ (1− α)aF (q0 − a) + αaF (q0)− αa
< aα(F (q0)− F (q0 − a)) + aα− αa
≤ 0 ,

and similarly,
Ga,a(q0 + a) ≥ (1− α)αa+ α2a− αa = 0 .

This shows that q0−a < min(Hα
a (F )) ≤ q0+a, from which is obtained lima↓0 min(Hα

a (F )) =
q0. Similarly, one can show that Ga,a(q1 + a) > 0 and Ga,a(q1 − a) ≤ 0, which are used to
establish lima↓0 max(Hα

a (F )) = q1.
Part (5) follows from the definition of expectiles and the Huber functional.
To prove part (6), let G̃a,b denote the function of the form (A.1) defined using F̃ in the

place of F , and suppose that F = F̃ on the interval [min(Hα
a,b(F ))− b,max(Hα

a,b(F )) + a].

If x ∈ Hα
a,b(F ) then Ga,b(x) = 0 and hence G̃a,b(x) = 0, whence Hα

a,b(F ) ⊆ Hα
a,b(F̃ ). The

reverse inclusion is obtained similarly.
Finally, for each part, the case when I ⊂ R can be deduced from the case when

I = R by considering the natural extension of F ∈ F(I) to F(R), and using the fact that
Hα
a,b(F ) ⊆ R(F ) ⊆ I.
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Proof of Theorem 4.5. To prove part (2), we take a similar approach to the proof presented
in [Brehmer, 2017, pp. 38–39] (which follows [Gneiting, 2011a]) of the consistency theorem
for expectiles. Suppose that F ∈ F(I) and that the expectations EF [φ(Y )−φ(Y −a)] and
EF [φ(Y ) − φ(Y + b)] both exist and are finite, which will guarantee the existence of the
expectations that follow. Fix a and b in (0,∞) and α in (0, 1). For convenience, denote
κa,b by κ. Consider t ∈ Hα

a,b(F ) and let x ∈ R. Suppose that φ is convex and let S be
defined by (4.7). We need to show that

EFS(x, Y )− EFS(t, Y ) ≥ 0. (A.3)

Define the function g : I × I → R by

g(u, v) = φ(v)− φ(u)− φ′(u)(v − u)

and note that g is nonnegative by the convexity of φ, and strictly positive if φ is strictly
convex. Define the function f : I × I → R by

f(u, v) = φ′(u)− φ′(v) ,

and note that f(u, v) ≥ 0 whenever u ≥ v by the convexity of φ, with f(u, v) > 0 whenever
u > v if φ is strictly convex.

To show (A.3), we break it up into two main cases (either x < t or t < x) and then into
several sub-cases. Consider first the case where x < t with subcase x − b < x < x + a ≤
t− b < t < t+ a. Define the sets Ai, where i ∈ {1, 2, ..., 7}, by A1 = {Y ∈ (∞, x− b)∩ I},
A2 = {Y ∈ [x − b, x] ∩ I}, A3 = {Y ∈ (x, x + a] ∩ I}, A4 = {Y ∈ (x + a, t − b) ∩ I},
A5 = {Y ∈ [t− b, t] ∩ I}, A6 = {Y ∈ (t, t+ a] ∩ I} and A7 = {Y ∈ (t+ a,∞) ∩ I}. Note
that the sets Ai are disjoint and that their union is I. Hence

EFS(x, Y )− EFS(t, Y ) = EF (S(x, Y )− S(t, Y ))
7∑
i=1

1Ai

We will calculate each term in the series and sum them together at the end. The calcula-
tions are:

EF (S(x, Y )− S(t, Y ))1A1

= (1− α)f(x, t)EFκ(t− Y )1A1 ,

EF (S(x, Y )− S(t, Y ))1A2

= (1− α)EF
(
g(x, Y + b) + f(x, t)κ(t− Y )

)
1A2 ,

EF (S(x, Y )− S(t, Y ))1A3

= EF
(
αS(x, Y )− (1− α)S(t, Y )

)
1A3

= αEF g(x, Y )1A3 + (1− α)EF
(
g(Y, Y + b) + bf(Y, x) + f(x, t)κ(t− Y )

)
1A3 ,

EF (S(x, Y )− S(t, Y ))1A4

= EF
(
αS(x, Y )− (1− α)S(t, Y )

)
1A4

= αEF
(
g(Y − a, Y ) + f(Y − a, x)

)
1A4

+ (1− α)EF
(
g(Y, Y + b) + bf(Y, x) + f(x, t)κ(t− Y )

)
1A4 ,

EF (S(x, Y )− S(t, Y ))1A5
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= EF
(
αS(x, Y )− (1− α)S(t, Y )

)
1A5

= αEF
(
g(Y − a, Y ) + f(Y − a, x)

)
1A5

+ (1− α)EF
(
g(Y, t) + (t− Y )f(Y, x) + f(x, t)κ(t− Y )

)
1A5 ,

EF (S(x, Y )− S(t, Y ))1A6

= αEF
(
g(Y − a, t) + (t− Y + a)f(Y − a, x) + f(x, t)κ(t− Y )

)
1A6 ,

EF (S(x, Y )− S(t, Y ))1A7

= αf(x, t)EFκ(t− Y )1A7 .

Now when summing these terms together, note that since t ∈ Hα
a,b(F ), Equation (3.3)

implies that

(1− α)EFκ(t− Y )1A1∪A2∪A3∪A4∪A5 + αEFκ(t− Y )1A6∪A7 = 0 (A.4)

and thus the all terms containing f(x, t) vanish. The remaining terms are all nonnegative
by the properties of f and g, which establishes (A.3) in this particular subcase and hence
that S is consistent for Hα

a,b.

To prove strict consistency in this subcase, suppose that φ is strictly convex and that
equality holds in (A.3). So we must have

0 = EF (S(x, Y )− S(t, Y ))

7∑
i=1

1Ai

= (1− α)EF g(x, Y + b)1A2 + (1− α)EF g(Y, Y + b)1A3 + αEF g(Y − a, Y )1A4

+ αEF g(Y − a, Y )1A5 + αEF g(Y − a, t)1A6 +K ,

where K can be written as a sum of nonnegative terms, having applied (A.4). Each of the
terms in the final expression is nonnegative, so for equality to hold they must all equal 0.
Now the terms involving A3, A4 and A5 are all strictly positive unless P(Y ∈ Ai) = 0 for
i = 3, 4, 5. Similarly, the terms involving A2 and A6 are positive unless P(Y ∈ A2\{x −
b}) = P(Y ∈ A6\{t + a}) = 0. Together, this implies that P(Y ∈ (x − b, t + a) ∩ I) = 0,
or equivalently that F is constant on (x− b, t+ a) ∩ I. Combining this with the fact that
t ∈ Hα

a,b(F ) if and only if (3.6) holds, it is easy to see that x ∈ Hα
a,b(F ). This establishes

strict consistency.

For the main case x < t, there are four further subcases:

x− b < x ≤ t− b < x+ a ≤ t < t+ a

x− b < t− b < x ≤ x+ a < t < t+ a

x− b < t− b < x < t < x+ a < t+ a

x− b < x ≤ t− b < t ≤ x+ a < t+ a .

The proof of consistency for each subcase proceeds in the same way as the first subcase,
and if proceeding in this order most of the calculations in subcases that have already been
proved can be used to prove subsequent subcases. The proof of strict consistency also
proceeds similarly for the first case, by showing that F is constant on (x − b, t + a) ∩ I.
Details are left to the reader.
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The case when t < x is proved the same way, but calculations are quicker by exploiting
symmetry and anti-symmetry. For example, the subcase

t− b < t < t+ a ≤ x− b < x < x+ a

proceeds by switching the roles of t and x in the definitions of Ai, and then making the
switches −a ↔ b and Ai ↔ A8−i in the calculations for each term. For example, in the
case when t > x we have A6 = {Y ∈ (t, t+ a] ∩ I} and

EF (S(x, Y )− S(t, Y ))1A6

= αEF
(
g(Y − a, t) + (t− Y + a)f(Y − a, x) + f(x, t)κ(t− Y )

)
1A6 ,

while in the case when x < t, after making switches, we have A2 = {Y ∈ (t− b, t]∩ I} and

EF (S(x, Y )− S(t, Y ))1A2

= αEF
(
g(Y + b, t) + (t− Y − b)f(Y + b, x) + f(x, t)κ(t− Y )

)
1A2 .

All the terms are nonnegative apart from those involving f(x, t), which will vanish when
all the terms are summed together. Details are left to the reader.

The case when t < x is proved the same way, but calculations are quicker by exploiting
symmetry and anti-symmetry with previously proved subcases. Details are left to the
reader. This completes the proof of part (2).

To prove part (1) for the cases when I is bounded or semi-finite, use the result of part
(2) with the bounded (on I) strictly convex function φ(t) = e−t (or φ(t) = et if I is the
of the form (−∞, c)). When I = R, use the same approach with φ(t) = t2 and note that
EF [φ(Y ) − φ(Y − a)] and EF [φ(Y ) − φ(Y + b)] exists and is finite if EFY exists and is
finite.

To prove part (3), we apply Osband’s principle with the identification function V of
Equation (3.5). An argument similar to [Gneiting, 2011a, p. 753, 759] shows that

∂1S(x, y) = h(x)V (x, y)

for x, y ∈ I and some function h : I → I, where ∂1 denotes partial differentiation with
respect to the first variable of the function. Integration by parts yields the representation
(4.7), where the function φ is defined by

φ(x) =

∫ x

x0

∫ v

x0

h(u) dudv

for some x0 in I. Now since S(x, y) ≥ 0 for all x, y ∈ I, it follows from (4.7) that
(x− y)φ′(x) + φ(y)− φ(x) ≥ 0 whenever −a ≤ x− y ≤ b, which in turn implies that φ is
convex on I. If S is strictly consistent, then S(x, y) > 0 for all non-identical x and y in I,
whence a similar argument shows that φ is strictly convex.

Proof of Theorem 5.2. Suppose that a > 0, b > 0 and φ ∈ C. Define the function Φ :
R2 → R by

Φ(x, y) = φ(y)− φ(κa,b(x− y) + y) + κa,b(x− y)φ′(x) , x, y ∈ R .
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We will show that

Φ(x, y) = 2

∫ ∞
−∞

SH
1/2,a,b,θ(x, y) dφ′(θ) , (A.5)

from whence follows the mixture representation (5.2), the fact that dM(θ) = dφ′(θ) and
the relationship M(x)−M(y) = ∂2S(x, y)/(1− α) whenever x > y.

To show (A.5), we break into five cases. For the case x− y < −a,

Φ(x, y) = φ(y)− φ(y − a)− aφ′(x)

= a(φ′(y − a)− φ′(x)) + (y − θ)φ′(θ)
∣∣∣y
θ=y−a

+

∫ y

y−a
φ′(θ) dθ

=

∫ y−a

x
adφ′(θ) +

∫ y

y−a
(y − θ) dφ′(θ)

=

∫ y

x
min(y − θ, a) dφ′(θ)

= 2

∫ ∞
−∞

SH
1/2,a,b,θ(x, y) dφ′(θ) .

The case x − y > b is handled analogously. The case −a ≤ x − y < 0 is essentially the
same as the proof of the case x < y for expectiles [Ehm et al., 2016, p. 529], and the case
0 < x− y ≤ b is analogous. The final case x = y is trivial.

Finally, note that the increments of M are determined by S and so the mixing measure
is unique.

Remark A.1. We show how the mixture representations for the consistent scoring functions
of quantiles and expectiles [Ehm et al., 2016, Theorem 1] emerge as limiting cases of Theo-
rem 5.2. Let SE

α,θ denote the elementary scoring function for Eα with parameter θ, and let

SQ
α,θ denote the elementary scoring function for Qα with parameter θ [Ehm et al., 2016].

Consider the case for expectiles first. For fixed x, y and θ we have

SE
α,θ(x, y) = lim

a→∞
SH
α,a,a,θ(x, y) .

Using the notation and limits following the statement of Theorem 4.5,

SE,φ
α (x, y) = lim

a→∞
SH,φ
α,a (x, y)

= lim
a→∞

∫ ∞
−∞

SH
α,a,a,θ(x, y) dM(θ)

=

∫ ∞
−∞

SE
α,θ(x, y) dM(θ) ,

where the interchange of limits and integration in the final equality is justified by the
dominated convergence theorem and where dM(θ) = dφ′(θ). This recovers the mixture
representation for expectiles. Turning now to quantiles, for fixed x, y and θ we have

lim
a↓0

1
aS

H
α,a,a,θ(x, y) =


1− α , y < θ < x

α , x ≤ θ < y

0 otherwise,
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and so lima↓0
1
aS

H
α,a,a,θ(x, y) = SQ

α,θ(x, y) for almost every θ (differing only when θ = y).
Hence, using the notation and limits following Theorem 4.5 and the dominated convergence
theorem,

SQ,φ′
α (x, y) = lim

a↓0
1
aS

H,φ
α,a (x, y)

= lim
a↓0

∫ ∞
−∞

1
aS

H
α,a,a,θ(x, y) dM(θ)

=

∫ ∞
−∞

SQ
α,θ(x, y) dM(θ) ,

where dM(θ) = dφ′(θ). This recovers the mixture representation for quantiles.
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