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Acronyms 
 

ACS – Australian Climate Service, see Section 1.1 

 

AEP – Annual Exceedance Probability. The probability that a threshold (e.g. rainfall 
total, flood extent) will be exceeded in any one year. For example, a 1% AEP event has 
a 1% chance of happening in any one year. See Section 5.3 and 5.4  

 

AGCD – Australian Gridded Climate Data. The Bureau of Meteorology's official dataset 
for spatial climate analyses across Australia. See Section 3 

 

ANCHORS – Australian National Collection of Homogenised Observations of Relative 
Sea Level. See Section 3.2.9 and 5.4 

 

BARRA2 – Second version of the Bureau of Meteorology Atmospheric high-resolution 
Regional Reanalysis for Australia. Reanalyses are widely used for climate monitoring 
and studying climate change as they provide long-term spatially complete records of 
the atmosphere. BARRA-R2 has a gridded resolution of approximately 12 km. See 
section 3.2 

 

CMIP – Coupled Model Intercomparison Project. CMIP is a project of the World 
Climate Research Programme (WCRP) providing climate projections to understand 
past, present and future climate changes. The CMIP6 ensemble of model simulations 
was produced in 2015-2021 and was a key input to the Intergovernmental Panel on 
Climate Change (IPCC) Sixth Assessment Report. It involves many models contributed 
from numerous countries around the world. See Section 3. 

 

CORDEX – Coordinated Regional Downscaling Experiment. CORDEX is a global 
initiative focused on advancing and coordinating the science and application of regional 
climate downscaling. See Section 3.1 

 

GCM – A Global Climate Model (GCM) is a complex mathematical representation of 
the major climate system components (atmosphere, land surface, ocean, and sea ice), 
and their interactions. They typically have a horizontal resolution of around 100 km. 
See Section 2.4 
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GWL – Global Warming Level. The increase in the global average surface temperature 
relative to pre-industrial levels. See Section 2.3 

 

LGA – Local Government Area. See Section 2.2 

 

IPCC – Intergovernmental Panel on Climate Change. The IPCC was created to provide 
policymakers with regular scientific assessments on climate change, its implications 
and potential future risks, as well as to put forward adaptation and mitigation options. 
Through its assessments, the IPCC determines the state of knowledge on climate 
change. It identifies where there is agreement in the scientific community on topics 
related to climate change, and where further research is needed. The Sixth 
Assessment Report (AR6) was published in stages, between August 2021 and 
September 2022. See Section 2.4 and 2.7 

 

MRNBC - Multivariate recursive nested bias correction. A multivariate bias correction 
that is an extension of quantile matching (see QME below) to include inter-variable 
correlations and in addition corrects across multiple timescales. See Section 3.2.4 

 

NCRA – National Climate Risk Assessment. See Section 1.2 

 

QME – Quantile Matching for Extremes. The QME method is a univariate bias 
adjustment with special focus on extreme events. See Section 3.2.4. 

 

RCM – Regional Climate Model. RCM can simulate climate and weather at higher 
resolution than Global Climate Models, typically 10 km. RCMs are a tool to dynamically 
downscale GCM outputs. See Section 2.5 

 

SLR – Sea Level Rise. See Section 2.7 and 3.2.9  

 

SSP – Shared Socio-economic Pathways. SSPs are used to explore the 
consequences of greenhouse gases accumulating in the atmosphere. Each SSP 
outlines ways the world might change in the future, including different types of energy 
generation, rates of population growth, economic development and land uses. These 
lead to different levels of greenhouse gas emissions over time. See Section 2.3 
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Executive Summary 
The Australian Climate Service (ACS) has developed and released climate hazard 
information. This report describes how this hazard information was produced and 
provides the rationale behind key decisions. We present information about current and 
future climate hazards, describe caveats and outline possible further work. 

This report is citable and provides technical documentation to underpin a national risk 
assessment, and sits within a broader suite of papers, fact sheets and reports. The report 
is aimed at a technical audience. We provide links for readers to access data and scripts, 
metadata and relevant publications. While activities are ongoing, this report provides a 
snapshot in time, summarising the development of hazard information for the first 
(Australian) National Climate Risk Assessment (NCRA) to end of December 2024. 

The standard methodology makes use of the latest downscaled climate model 
projections (CMIP6) developed in partnership between the Bureau of Meteorology and 
CSIRO. Hazard information is developed based on a 13-member model ensemble for 
two shared socioeconomic pathways (SSP).  

Climate projections have been regridded to a common 5-km resolution and calibrated 
against observations using univariate and multivariate calibration techniques. We briefly 
describe the model projections, bias adjustment methods and evaluation of model 
performance. 

Where possible, information on future hazards is provided for four Global Warming 
Levels (GWL): 1.2, 1.5, 2 and 3 °C against pre-industrial global climate. Coastal hazards 
are an exception, using sea level rise increments instead noting that global sea level is 
dependent on both temperature and time. 

We have developed information on how key climate variables and ten priority hazards 
are likely to change under climate change. Key climate variables, sometimes referred to 
as essential climate variables, include variables such as rainfall and temperature. 
Section 2 summarises key decisions and definitions.  

A companion report (CSIRO 2025) describes the underpinning climate projections. They 
are based on the latest international climate modelling and have a strong focus on 
climate extremes, supported by a multi-model Regional Climate Model (RCM) ensemble 
following the `Coordinated Regional Climate Downscaling Experiment (CORDEX) 
guidelines, supplemented by insights from Global Climate Models (GCMs) from the 
Coupled Model Intercomparison Project phase 6 (CMIP6), including large ensembles 
(many runs of the same model). 
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Figure 1: Key decisions and definitions. 

The report is structured as follows: 

Section 1 provides context, introducing the ACS and the NCRA. 

Section 2 provides detail on key decisions and definitions, such as the set of priority 
hazards, geographical regions, Global Warming Levels, and choice of Shared Economic 
Pathways. It also provides a detailed description of the workflow developed to regional 
statistics for key hazard indices. 

Section 3 provides detail on the historical and projections information underpinning the 
information for each of the hazards, the choice of indices and links to data and supporting 
documentation. This section also provided details on the 13-member ensemble of 
downscaled climate projections and bias adjustment techniques. 

Section 4 describes how the Hazard Teams were structured, how they interacted with 
their counterparts (Risk Leads) to support developing the risk assessment. This section 
also documents important learnings such as product planning in the absence of clear 
requirements. 

Section 5 provides detailed information on the priority hazards and key climate variables, 
including a definition of the hazard, indices used and relevant references. Key findings 
are presented together with caveats and options for future work. 

Section 6 provides information on how to access the hazard information and 
underpinning climate projections data. This section also has links to Metadata 
information and supporting documentation, including relevant Python scripts. 
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1. Introduction 
The Australian Climate Service (ACS) has developed and released climate hazard 
information, initially for use in the first National Climate Risk Assessment (NCRA). This 
report describes how this hazard information was produced and provides the rationale 
behind key decisions. We present information about current and future climate hazards, 
describe caveats and outline further work. 

As such this report is citable and provides technical documentation to underpin NCRA 
reports, and sits within a broader suite of papers, fact sheets and reports. This report is 
aimed at a technical audience, with more general information available through fact 
sheets etc. We provide links for readers to access data and scripts, metadata and 
relevant publications.  

1.1. The Australian Climate Service 
Over recent decades, Australia has seen multiple record-breaking events, such as the 
Millenium Drought (1996-2009), Black Saturday (2009), the Victorian and Queensland 
floods (2010-11), the Tasmanian Fires (October 2015) followed by Tasmanian floods 
(June 2016), the South Australian Energy System Blackout (September 2016), the 
Victorian and NSW Black Summer (2019-20) and the Queensland and NSW floods 
(2022). These events affected the lives and livelihoods of Australians. 

The Royal Commission into National Natural Disaster Arrangements was established on 
20 February 2020 in response to the extreme bushfire season of 2019-20 (Black 
Summer). In October 2020, the Royal Commission set out a number of 
recommendations, including those listed below, that laid the foundation for the ACS: 

• Recommendation 4.5 - National climate projections Australian, State and 
Territory governments should produce downscaled climate projections 

• Recommendation 4.3 - Implementation of the National Disaster Risk 
Information Services Capability Australian, State and Territory governments 
should support the implementation of the National Disaster Risk Information 
Services Capability and aligned climate adaptation initiatives 

• Recommendation 4.4 - Features of the National Disaster Risk Information 
Services Capability The National Disaster Risk Information Services Capability 
should include tools and systems to support operational and strategic decision 
making, including integrated climate and disaster risk scenarios tailored to 
various needs of relevant industry sectors and end users  

The ACS came into being with the vision to advance information and knowledge that is 
used to enable a safer, adaptive and prosperous Australia, resilient and prepared for 
climate change and natural hazards. The ACS is delivering on this vision by building and 
enhancing Australia's climate and weather hazard intelligence capability, and improving 
access to integrated authoritative data, information and expert advice. 
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The ACS consists of four partner organisations: the Bureau of Meteorology, CSIRO, the 
Australian Bureau of Statistics (ABS) and Geoscience Australia (GA). Key customers 
are the Department of Climate Change, Energy, Environment and Water (DCCEEW), 
the National Emergency Management Agency (NEMA), Australian Prudential Regulation 
Authority (APRA), Treasury and others. The ACS provided guidance to APRA how 
climate perils are likely to change under an approximate 2.5 ˚C increase in global mean 
temperature by 2050. This advice is documented in Black et al. 2024. 

The ACS is now integral to the Australian climate risk landscape, e.g. through 
collaborating with initiatives like the National Partnership for Climate Projections (NPCP) 
led out of DCCEEW, giving a voice to communities of existing users, especially 
States/Territories, the National Environmental Science Program (NESP), the Natural 
Hazards Research Australia (NHRA), state-based initiatives, such as the Victorian Water 
and Climate Initiative (VicWaCI) and internationally through such contributions to 
CORDEX efforts. 

While the ACS is developing its own purpose-built platform, this is in the context of 
existing information and portals such as Climate Change in Australia (CCiA), the National 
Hydrological Projections (NHP), My Climate View (climate information for agriculture), 
Canute (Sea level information) and Coastal Risk Australia, and portals developed by 
States and Territories, e.g. Queensland Future Climate. A review of existing portals is 
provided in Jakob et al 2023. 

1.2. The National Climate Risk Assessment (NCRA) 
The motivation behind the first NCRA is that climate change is a serious risk to the safety 
and prosperity of Australians, and the need for a national focus for resilience and disaster 
risk reduction. The vision for the NCRA was to provide a clear and consistent process 
for identifying and prioritising climate risks, provide a framework for ongoing monitoring 
of national priority climate risks, inform the National Adaptation Plan to minimise future 
adverse impacts from climate change and allow for the evaluation of the effectiveness 
of adaptation policies and actions. It was anticipated that the ACS would provide the 
hazard information required for assessing risks, with exposure and vulnerability 
information coming through the ACS as well as other providers. The first pass risk 
assessment developed methodologies and the structure for undertaking NCRA activities. 
The second pass risk assessment is focused on key systems and risks identified through 
the earlier activities. The work is nearing completion, and has used the hazard 
information to support quantitative analysis, where possible. 

While ACS activities formally commenced in July 2021, the NCRA commenced in 
January 2023. As such there was a need for the ACS to balance the delivery of longer-
term strategic activities against delivering against short timelines for input into the NCRA. 
For the first pass risk assessment an overview of observed and projected trends in 
hazards was produced based on a literature review (Figure 2). 
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Figure 2: Overview of observed and projected trends in Australia’s climate hazard. Source: National Climate 
Risk Assessment First Pass Assessment Report. 
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2. Decisions made 
In this section we describe decisions and key definitions that were developed following 
a literature review, workshops and consultation with stakeholders and scientists. These 
provide the framework in which climate hazard information was developed and analysed. 

2.1. Priority hazards and key climate variables 
The priority hazards for the NCRA were defined in an options paper 'NCRA Priority 
Hazards' (April 2023) and tested with the NCRA Expert Advisory Committee, the National 
Partnership for Climate Projections (NPCP) and other experts. They were then published 
in the NCRA Methodology.  

These are (in alphabetical order):  

• Bushfires, grassfires and air pollution  

• Changes in temperature including extremes 

• Coastal and estuarine flooding  

• Coastal erosion and shoreline change  

• Convective storms including hail  

• Drought and changes in aridity  

• Extratropical storms  

• Ocean warming and acidification  

• Riverine and flash flooding  

• Tropical cyclones  

In addition to the above, changes in the key climate variables were also provided for the 
NCRA:  

• Average and extreme temperature (maximum and minimum) 

• Average and extreme rainfall  

• Sea level and sea level rise  

2.2. Regions 
Hazard Information was developed and provided nationally and for ten NCRA regions 
(excluding the Antarctic) (Figure 3). A marine region was included to provide information 
for risk assessments for marine ecosystems, fisheries, tourism etc.   

The State and Territory based regions, including coastal waters, reflect the spatial scale 
of decisions being made by those making adaptation plans at both state and federal 
government levels, including departments and nationally focused organisations. This 
contrasts with Natural Resource Management (NRM) regions which have been used in 

https://www.dcceew.gov.au/climate-change/publications/national-climate-risk-assessment
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previous Australian climate assessments and included in some IPCC reports. While 
NRM regions better align with the Australian climate and previous climate change 
assessments, they do not necessarily reflect the regions by which climate risk is 
assessed and adaptation measures employed. Hence, these regions were defined 
considering requirements of decision-makers and climatic conditions. 

More granular information is highly desirable for many stakeholders, such as at Local 
Governance Areas (LGA) and future assessments may provide information for additional 
regions. We note that the base data described here largely sits on a 0.05 degree grid 
over land (with various resolutions over the ocean) supporting a range of spatial scales 
for analysis. 

 
Figure 3: Regions defined by the National Climate Risk Assessment Methodology (DCCEEW 2023). 

2.3. Global Warming Levels 
Projections are traditionally reported for scenarios to explore emissions and their impact 
through time. Here we draw on projections for two scenarios, SSP1-2.6 and SSP3-7.0, 
chosen to "bracket" or "bookend" a range of plausible and policy-relevant SSPs and 
resulting climate change response (CSIRO 2025).  Downscaling climate models, post-
processing and storing their data is computationally expensive. Subsampling the full 
range of emission scenarios is simply pragmatic.  

The relationship between GWLs and the two projection scenarios is illustrated in Figure 
4. GWLs are used in climate projections to describe the expected climate and weather 
changes that Australia will experience when global average temperatures reach 
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particular degrees of warming compared to the pre-industrial era. Depending on 
emissions levels (SSPs), these levels of warming will be reached at different time 
periods. Advantages of using the GWLs are that they are informative and easy to 
understand, are recognised internationally (e.g. Paris Agreement goals) and are highly 
policy relevant. GWLs also have the advantage of standardising across different 
contexts, so results presented for GWLs are comparable when using different future 
pathways (e.g., SSP and RCP) or models (e.g., CMIP5 and CMIP6). The policy 
relevance and simpler interpretation are key reasons for their choice here. Alternatively, 
information can be provided according to time and emissions, which might be preferable 
for some applications. Hazard information is provided for Global Warming Levels (GWLs) 
of 1.2 ˚C, 1.5 ˚C, 2 ˚C and 3 ˚C. Time periods for which 1.2 ˚C, 1.5 ˚C, 2 ˚C and 3 ˚C 
GWLs are reached (with respect to the period chosen to be representative of the pre-
industrial 1850-1900 mean value) are computed from global climate models using a 20-
year moving window, https://github.com/AusClimateService/gwls. 

The GWL relates to the global average over land and ocean, global land-only averages 
are higher because land areas are warming faster than oceans which have greater 
thermal capacity and hence warm slower.  

Global Warming Levels and time periods: 

• 1.2 °C - This is the current level of global warming for the 20-year period centred 
around 2020 (i.e., 2011 to 2030). Analysing this level allows us to compare future 
warming scenarios with our current climate. Note that this period is not purely 
historical as it will include some future years. 

• 1.5 °C - Will be reached in the near-term period under all emissions scenarios. 
Global average temperatures will only stabilise around 1.5 °C under extremely 
low emissions scenarios (SSP1-1.9) and with some ‘overshoot’ likely. 

• 2 °C - Will be reached around mid-century under moderate, high or very high 
emissions scenarios. Under low emissions, global average temperatures are 
likely to stabilise at or just under 2 °C. Under extremely low emissions scenarios 
(SSP1-1.9), this level could be avoided altogether. 

• 2.7 °C - Under current policy (and without further concerted action), 2.7 °C will 
be reached at the end of the century. Please note, this level will not be assessed 
on the Hazard Maps and is included only for context as an indication of our 
current trajectory. 

• 3 °C - It is possible that global average temperatures will reach 3 °C after 2050 
under moderate emissions scenarios. It is very likely that this level will be reached 
after 2050 under high to very high emissions scenarios. 

https://github.com/AusClimateService/gwls
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Figure 4: Global warming thresholds of 1.1, 1.2, 1.5, 2, 3 and 4°C (horizontal dotted lines) periods when they 
are reached under a low emission scenario SSP1-2.6 (green lines and shading) and under a high emission 
scenario SSP3-7.0. Commonly used 20-year periods (grey shading) are the 2030s (2020 to 2040), the 2050s 
(2040 to 2060) and the 2090 (2080 to 2100) [adapted from IPCC 2021 Summary for Policymakers]. 

2.4. Characterising uncertainty and confidence 
Projection uncertainty has various causes. Hawkins and Sutton (2009) characterise 
uncertainty into: 

• Internal variability 

• Scenario differences 

• Model-to-model differences in forced response 

For temperature, scenario differences become increasingly important over time with a 
fairly tight relationship between greenhouse gas concentrations and warming. 

For rainfall, internal variability and GCM model-to-model differences in forced response 
dominate the uncertainty. 

RCM model-to-model differences do matter at this regional scale but are generally a 
smaller factor. More information on the projection uncertainty of the ACS CMIP6-based 
Next Generation of Projections can be found in an accompanying report (CSIRO 2025). 

To assess and report confidence in the projected changes shown here, we use the IPCC 
system of considering uncertainty, including confidence and likelihood ratings (see 
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Mastrandrea et al. 2010). This system considers the type, amount, quality and 
consistency of evidence, and the agreement of that evidence. This assessment is used 
to derive a qualitative expression of the validity of a finding, such as the direction of 
change or a range of outcomes, from low confidence to very high confidence. If 
confidence is high, an expression of likelihood may also be given, from exceptionally 
unlikely to virtually certain, with an additional description of fact for things that are not in 
any doubt. 

2.5. Model ensemble  
In general, RCMs follow the global driving GCM signal. However, RCMs can modify the 
regional climate significantly, particularly for rainfall. Some of this may be a modification 
of "forced signal", some of it may be chaotic internal variability. Currently, it is unclear 
whether one RCM is better than another. The differences in projections from different 
RCM provide an estimate of uncertainty due to the choice of RCMs. There are subjective 
methodological choices conducted in each RCM exercise. Until proven otherwise we 
must assume that they are all equally valid. For details on the models selected for 
developing hazard information refer to Section 3.2 Bias adjustment.  

For regional temperature change all RCM ensembles project a similar range as seen in 
the GCM ensemble, since GCM were selected to representatively sample warming 
(Figure 5, top panel). 

RCM ensembles vary widely in their projections of regional rainfall change with global 
warming (Figure 5 bottom panel). Even though the GCMs were selected to be 
representative of future rainfall changes, some RCM simulations do alter the GCM signal 
substantially. Using only one RCM ensemble may bias the projection range significantly, 
noting the significant variability that can occur. 
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Figure 5: Projected changes for each of the CORDEX-Australasia RCM ensembles as well as the CMIP6 
GCM ensemble, for Australian average temperature (top) and rainfall (bottom) at global warming levels 1.5, 
2 and 3 °C, relative to the current (1.2C) global warming level. GWL calculations are described in Section 
2.6. 
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2.6. Calculation of regional statistics 
Decision-makers typically require summary information at a regional scale, such as 
those defined in Section 2.2. Accordingly, regional statistics were developed for each of 
the key hazard indices to characterise: 

1. Average conditions, based on the multi-model ensemble median, and  
2. the spread of conditions – represented by either the ensemble 

minimum/maximum or the ensemble 10th/90th percentiles, as deemed most 
appropriate for the given hazard index. 

The workflow for calculating regional statistics required data aggregation across time, 
space and ensemble members. The specific order of operations is detailed in Technical 
Box 1. 

Technical Box 1. Calculating regional statistics for Global Warming Levels 

Regional statistics were calculated for each of the four Global Warming Levels (GWL 
1.2, 1.5, 2.0 and 3.0 °C). Understanding how the regional statistics were calculated 
will help you understand how to interpret these values.  

The regional statistics may be summarised using heat maps (see bottom of Figure 
T1.1. for an example). A heatmap is a two-dimensional graphical representation of 
data that uses a system of colour coding to represent different values. 
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Figure T1.1: Visualisation of the workflow for creating regional statistics of hazard indices for a specified 
Global Warming Level. The callout box in the upper part of the figure (grey) shows the typical order of 
operations for calculating regional statistics (shown here for a specific ensemble member and target 
region). Steps 1 – 4 are repeated for each of the nine study regions and 13 ensemble members; the 
results are then summarised in the form of a heat map (ensemble members along x-axis and regions 
along y-axis).  

Annotation for the workflow presented in Figure T1.1: 

1. Hazard indices are calculated from the climate model simulations at each 
model grid cell (for the period 1980 – 2099). 

2. A 20-year time slice is extracted to represent the desired GWL. The timing of 
each GWL is identified as the first 20-year period during which the average 

6. 
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global surface temperature change exceeds the specified GWL relative to the 
1850 – 1900 base period. The timing of reaching global warming levels is 
expected to be different under different emissions pathways; it may even 
differ between climate models run under the same emissions pathway (see 
Section 2.3 for details).  

3. At each model grid cell, the hazard index is averaged over the 20-year GWL 
time slice, to provide an average value for the specified GWL. 

4. Spatial averages for a desired region (e.g. New South Wales) are calculated 
by averaging all of the model grid cells that fall within that region. The output 
of Step 4 is a single value that represents the temporal- and spatial-average 
for that GWL/region combination.  

5. Steps 1 – 4 are repeated for each of the study regions (excluding the 
Antarctic and marine region) and 13 climate model ensemble members. 

6. The results are presented in the form of a heat map. The ensemble members 
are separated along the x-axis and the regions along the y-axis. To calculate 
a central measure and a measure of spread for a given study region, the 
ensemble values (represented by the heat map columns) are ranked in 
increasing order. The value ranked 7th is the median (50th percentile). An 
approximate value for the 10th and 90th percentile can be found in the same 
way using the second lowest and second highest value. 

Regional statistics for GWL 1.5, 2.0 and 3.0 °C were also presented as changes 
relative to the GWL 1.2 °C baseline (e.g., see Figure 13). This was achieved using 
the above workflow, with the addition of Step 3a (whereby, for example, the output of 
Step 3 was separately calculated for GWL 1.2 and 3.0 °C, the difference computed, 
and the resulting difference field then used in subsequent Steps 4-6). 

 

For smaller regions (Local Government Area LGA, Statistical Area Level 2 SA2) the 
spatial averages would be based on a small number of grid points. Averaging over these 
smaller regions requires further evaluation and these values were not provided with the 
exception of coastal hazard information (Section 5.4). 

2.7. Sea level rise increments 
A global warmings levels (GWL) approach was adopted for Australia's first National 
Climate Risk Assessment (Section 2.3). An important feature of GWLs is an assumption 
that all climate variables respond proportionately to changes in temperature. In other 
words, it doesn't matter if a GWL of 2 °C occurs in 2050 or 2070, the expected 
consequences on other climate variables are the same. This time-independence is 
broadly true for most terrestrial climate variables (Intergovernmental Panel on Climate 
Change (IPCC) 2018). However, it is not true for sea level, where the long response time 
to warming means that sea level continues to rise long after warming has stabilised at a 
specific GWL (e.g., Figure 6). There isn't a simple mapping between the concept of a "2 

°C world" without considering in which year 2 °C is reached and the change in coastal 
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hazards this implies. For example, the IPCC AR6 (Fox-Kemper et al. 2021; their Table 
9.10) presents sea-level rise amounts that correspond to given warming levels, 
contingent on a scenario (e.g., SSP3-7.0) and a year (e.g., 2100) being pre-specified. In 
other words, some time-dependence is required to ensure the problem remains 
tractable. 

 
Figure 6: Increase in global temperature (top) and sea level rise (bottom) for two scenarios (left: SSP1-2.6, 
right: SSP2-4.5). Pale shading indicates the 90% confidence range, while the darker shading indicates the 
50% confidence range. 

To decouple the time dependence between increases in temperature and increases in 
sea level with climate change, changes in coastal hazards are presented as a function 
of a set increment of sea-level rise. Sea-level rise increments are used in coastal 
research, and coastal adaptation policies and the scientific reports underpinning these 
(Hague et al. 2023b; Hanslow et al. 2018; McInnes et al. 2022; Dedekorkut-Howes et al. 
2021). Sea-level rise increments are conceptually equivalent to GWLs in that they are 
time-independent bases for the development of climate hazard studies. When viewed on 
plot of sea-level rise vs time, increments represent a plausible range of values on the 
horizontal axis as a function of time, whereas projections represent a plausible range of 
values in the vertical axis as a function of sea level rise. In other words, increments (and 
GWLs) cast uncertainty of future hazards in terms of 'when' rather than 'how much' 
(Hague et al. 2023b; Ghanbari et al. 2019). Instead of presenting hazard maps 
conditional on a chosen year and emission scenarios, maps are provided conditional on 
an amount of sea-level rise. Sea-level rise projections can then be used to provide 
estimates of when these hazard levels are expected.  

The methodology for Australia's first NCRA used the policy-relevant Global Warming 
Levels framework to inform adaptation (Department of Climate Change Energy 
Environment and Water 2023). The NCRA has used a range of warmings projected for 
plausible emission scenarios, ignoring very small and very large warmings (Table 1). 
These have been approximated in the NCRA as GWL 1.2, 1.5, 2.0 and 3.0 °C. 
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Temporally, for 2030 GWL 1.5 °C is most relevant, at 2050 GWL 1.5 and 2.0 °C are most 
relevant, while for 2090 GWL 1.5, 2.0 and 3.0 °C are all relevant. In this section we 
describe comparable SLR increments, and how existing information can be presented in 
terms of them.  

For the 2024 NCRA SLR increments, relative to the IPCC AR6 baseline of 1995 – 2014 
mean sea level, of 0.0, 0.1, 0.2, 0.38, 0.6 and 1.0 m were used. It is not possible to 
exactly match the 20-year window used for the GWLs. SLR increments were mostly 
based on Table 11.3a in the Australasian chapter of the IPCC's 6th Assessment Report 
from Working Group 2 (Lawrence et al., 2022). 

- 0.1 m SLR was chosen as it was representative of minimum SLR expected by 
2030 for Australia (regardless of warming level) 

- 0.2 m SLR was chosen as it was representative of minimum SLR expected by 
2050 for Australia (regardless of warming level)  

- 0.38 m SLR was chosen as it was representative of the SLR expected for 
Australia by 2090 in a 2 °C world. 

- 0.6 m SLR was chosen as it was representative of the SLR expected for Australia 
by 2090 in a 3 °C world. 

- 1.0 m SLR was chosen as it is representative of the legislated SLR benchmarks 
being used in some state jurisdictions (Dedekorkut-Howes et al. 2021). Decision-
makers have chosen a risk-averse approach and set SLR benchmarks that have 
lower probability but higher consequence (van de Wal et al. 2022). 

A SLR increment of 0.06 m was also used as the 'present-day' baseline for the period 
2010 – 2029, with differences to this level also reported on (e.g., 0.32 m as the difference 
between 0.38 m and 0.06 m), meaning increments of 0.14 m, 0.32 m, 0.54 m and 0.94 
m also appear in the NCRA and this report.  

Going forward, we propose a simpler approach that better recognises the independence 
between future SLR and future GWLs. This is to provide hazard information for all SLR 
increments between 0.0 m and 2.0 m in 0.1 m increments. This will ensure that policy-
relevant information can be obtained from the projection information, regardless of the 
legislated jurisdictional sea-level rise benchmark and locally relevant adaptation triggers, 
which are typically expressed as a sea-level rise increment above a mean value over 
some baseline (Hague et al. 2024a; Dedekorkut-Howes et al. 2021).  
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3. Description of input data 
In this section, we provide a summary of the modelling chain and bias adjustment 
methods used to develop the hazard information. A companion report (CSIRO 2025) 
describes the choices, development, production and evaluation of GCM and RCM data 
used to derive the hazard information. At the time the analysis was undertaken, a total 
of 8 GCMs dynamically downscaled using the Bureau of Meteorology's BARPA and 
CSIRO CCAM RCMs were available (Table 2). GCMs were carefully selected to meet 
evaluation tests, meet a threshold of independence from each other, and to 
representatively sample the range of change from the CMIP6 ensemble as a whole 
(Grose et al. 2023).  

Two shared socioeconomic pathways were used for the GCM projections (SSP1-26 and 
SSP3-70). Two bias adjustment methods were subsequently applied to the dynamically 
downscaled data; the univariate Quantile Matching for Extremes (QME) method and the 
Multivariate recursive nested (MRNBC). See section 3.2 for details. 

In addition, two ‘target’ or reference datasets were used to adjust or calibrate the model 
data to match; Australian Gridded Climate Data (AGCD) and Bureau of Meteorology 
Atmospheric high-resolution Regional Reanalysis for Australia version 2 (BARRA-R2). 
When using AGCD the variables daily gridded precipitation, maximum temperature and 
minimum temperature only were bias adjusted while when using BARRA-R2 as 
reference, maximum surface windspeed, downwelling shortwave solar radiation, 
maximum surface relative humidity and minimum surface relative humidity were also 
included. See Figure 7 for a flow diagram of the modelling chain. We elaborate on this 
in the following sections. Refer to Table 1 for the model data that was used to develop 
hazard information. Note that while 8 GCM were used, not all were available for both 
RCMs. 

 
Figure 7: Flow diagram of the sequence used to produce bias-adjusted data. 
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Table 1: Projections data used in developing hazard information, including links to relevant sections of this 
report. 

Hazard/Essenti
al climate 
variable 

Projections 
information 

Bias 
adjustment 

Location on NCI Additional 
documentation on 
GitHub 

Extreme 
temperatures 
and heatwaves 
(5.1.1) 

CMIP6 13-member 
ensemble 

GWL 1.2, 1.5, 2.0, 3.0 

QME 
against 
AGCD 

/g/data/ia39/ncra/heat/ https://github.com/A
usClimateService/ha
zards-heat 

 

Drought and 
changes in 
aridity (5.1.2) 

SPI and 15th 
percentile rainfall 

CMIP6 13-member 
ensemble 

Aridity index  

CMIP5 (NHP) 

QME 
against 
AGCD 

/g/data/ia39/ncra/drou
ght_aridity 

https://github.com/A
usClimateService/ha
zards-drought 

 

 

Bushfire 

(5.1.3) 

Fire climate classes 

CMIP6 13-member 
ensemble 

FFDI  

CMIP6 13-member 
ensemble 

MRNBC 
against 
BARRA-R2 

/g/data/ia39/ncra/bush
fire/ 
 

https://github.com/A
usClimateService/fir
e_climate_classes 

https://github.com/A
usClimateService/ha
zard_fire 

 

 

Extratropical 
cyclones (5.2.1) 

CMIP6 13-member 
ensemble 

SSP3- 7.0 

GWL 1.2, 1.5, 2.0, 3.0 

Mean sea 
level 
pressure not 
bias 
corrected 

/g/data/ia39/ncra/extra
tropical_storms 

https://github.com/A
usClimateService/N
CRA_ExtratropicalH
azardTeam  

 

 

Tropical 
cyclones 

(5.2.2) 

CMIP5 9-member 
ensemble 

RCP 8.5 

 /g/data/ia39/ncra/tropi
cal_cyclones 

https://github.com/A
usClimateService/ha
zards-TC  

 

 

Convective 
storms including 
hail 

(5.2.3) 

Only qualitative 
assessment of future 
changes provided 

Changes in CAPE and 
CIN based on 
BARRA-R2 (1995-
2014) 

  /g/data/ia39/ncra/conv
ective 

N/A 

Extreme rainfall 
(5.3.1) 

and 

RX1D, RX5D, RX1H 

CMIP6 13-member 
ensemble (SSP3 -7.0) 

QME 
against 
AGCD 

Hourly 
rainfall is not 

/g/data/ia39/ncra/extra
tropical_storms 

N/A 

https://github.com/AusClimateService/hazards-heat
https://github.com/AusClimateService/hazards-heat
https://github.com/AusClimateService/hazards-heat
https://github.com/AusClimateService/hazards-drought
https://github.com/AusClimateService/hazards-drought
https://github.com/AusClimateService/hazards-drought
https://github.com/AusClimateService/fire_climate_classes
https://github.com/AusClimateService/fire_climate_classes
https://github.com/AusClimateService/fire_climate_classes
https://github.com/AusClimateService/hazard_fire
https://github.com/AusClimateService/hazard_fire
https://github.com/AusClimateService/hazard_fire
https://github.com/AusClimateService/NCRA_ExtratropicalHazardTeam
https://github.com/AusClimateService/NCRA_ExtratropicalHazardTeam
https://github.com/AusClimateService/NCRA_ExtratropicalHazardTeam
https://github.com/AusClimateService/NCRA_ExtratropicalHazardTeam
https://github.com/AusClimateService/hazards-TC
https://github.com/AusClimateService/hazards-TC
https://github.com/AusClimateService/hazards-TC
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Hazard/Essenti
al climate 
variable 

Projections 
information 

Bias 
adjustment 

Location on NCI Additional 
documentation on 
GitHub 

Average rainfall 
(5.3.2) 

 

 

 

bias 
adjusted just 
scaled 

Riverine and 
flash flooding 
(5.3.3) 

Rainfall 

CMIP6 8-member 
ensemble downscaled 
using BARPA for 
SSP5-8.5 

Soil saturation and 
runoff 

CMIP5 ensemble 
developed for NHP 
(RCP 4.5 and RCP 8.5 
which is equivalent to 
SSP5-8.5) 

 /g/data/ia39/ncra/flood https://github.com/A
usClimateService/ha
zard-flood  

 

Coastal 
hazards (0) 

Based on IPCC AR6 
projected future 
changes in mean sea 
levels 

 g/data/ia39/ncra/coast
al 

https://github.com/A
usClimateService/ha
zards-coastal 

 

Marine extremes 
(5.5) 

Ocean warming and 
acidification 

CMIP5 multi-model 
mean projections for 
RCP8.5 used to drive 
eddy-resolving model 
(OFAM3)  

  https://github.com/A
usClimateService/ha
zard_ocean  

 

3.1. Model selection 
A total of eight GCMs were selected for producing new Regional Climate Model (RCM) 
projections from CSIRO and BoM (listed in Table 2). They were chosen to span a range 
of hot/cool and wet/dry models with a range of climate sensitivities, and a consideration 
of changes in important features of atmospheric circulation (e.g. subtropical ridge and 
monsoonal shear line).  

The simulations we have produced are compliant with the Coordinated Regional 
Downscaling Experiment (CORDEX) protocols, and there are two other contributors to 
CORDEX Australasia, the NARCLIM2.0 program and the Queensland Future Climate 
Program v2 (see Grose et al. (2023) for more details). Each group selected their own set 
of models to form a ‘sparse matrix’ of GCM-RCM combinations (see Table 2 for details).  

The models are designed to span the host CMIP6 model ensemble as much as possible, 
so that statistics such as ensemble mean should replicate the ensemble of host CMIP6 

https://github.com/AusClimateService/hazard-flood
https://github.com/AusClimateService/hazard-flood
https://github.com/AusClimateService/hazard-flood
https://github.com/AusClimateService/hazards-coastal
https://github.com/AusClimateService/hazards-coastal
https://github.com/AusClimateService/hazards-coastal
https://github.com/AusClimateService/hazard_ocean
https://github.com/AusClimateService/hazard_ocean
https://github.com/AusClimateService/hazard_ocean
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GCMs reasonably well. Projections from the 14 simulations from these two RCMs are 
also broadly representative of the 39 simulations from four models in the entire CORDEX 
Australasia ensemble in terms of projected change in mean temperature and rainfall 
(CSIRO 2025).  

Where hazard information developed for NCRA made use of these simulations, they 
were based on a 13-member ensemble (labelled from 1 through to 13 in Table 2) 
because one of the 14 simulations was not available at the time (NorESM2-MM 
downscaled using CCAM-ACS). 

For some purposes, users may wish to explore the set of ACS RCMs along with the 
entire CORDEX ensemble. Also, given that there is still a relatively small sample size of 
modelling, rather than use traditional statistics of ensemble mean and range, it can be 
useful to take a  storyline or "representative climate futures" approach (CSIRO and 
Bureau of Meteorology 2025). This could take the form of investigating a drier (e.g. 
ACCESS-ESM1.5), hotter (e.g. ACCESS-CM2) or wetter (e.g. EC-Earth3) future 
determined by a host GCM and exploring all the RCM downscaled experiments, to fully 
explore these plausible future climates. For this purpose, the EC-Earth3 and EC-Earth3-
Veg models were selected as a wetter representative climate future, so can be 
considered together.  
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Table 2: The CMIP6 GCMs downscaled with four different RCM configurations (top row), including the seven 
downscaled by the Bureau of Meteorology Atmospheric Regional Projections for Australia (BARPA) and the 
CSIRO CCAM model using spectral nudging. The 39 ensemble members are sequentially numbered. 

 BARPA-R CCAM-ACS QldFCP-2 NARCLIM2.0 

ACCESS-CM2 1 8 15  

ACCESS-ESM1-5 2 9 16-18 30, 31 

CESM2 3 10   

CMCC-ESM2 4 11 19  

CNRM-CM6-1-HR   20, 21  

CNRM-ESM2-1  12   

EC-Earth3 5 13 22  

EC-Earth3-Veg    32, 33 

FGOALS-g3   23  

GFDL-ESM4   24  

GISS-E2-1-G   25  

MPI-ESM1-2-HR 6   34, 35 

MPI-ESM1-2-LR   26  

MRI-ESM2-0   27  

NorESM2-MM 7 14 28, 29 36, 37 

UKESM1-0-LL    38, 39 

 

3.2. Bias adjustment  

3.2.1. The need for bias adjustment 
Climate projections are initially produced from output from relatively coarse resolution 
Global Climate Model (GCM) simulations (~100–300 km). Regional Climate Models 
(RCM) use the output of GCMs as the boundary conditions to provide much higher 
resolution simulations (~10 km) that include increased topographic information. This 
helps resolve local -scale processes such as coastal circulations and uplift over 
topography (Giorgi and Gutowski 2015; Jones et al. 2011; Giorgi et al. 2009). This 
modelling is the primary source of information to assess future climate change and 
variability, and the impact of extremes at both the global and regional scale. However, 
the modelling process still produces inherent biases, seen in comparison of GCM and 
RCM output with observations. These persistent differences from observed datasets 
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makes their direct use unsuitable for decision-making processes at a local scale 
(Gebrechorkos et al. 2023). In addition, running high-resolution dynamical models is 
computationally intensive making them difficult to run at the resolution required for local-
scale information (Maraun 2013). 

Therefore, to produce ‘application-ready, locally relevant’ datasets suitable for applied 
analysis, we need to perform further downscaling and calibration to a reference dataset. 
A practical method to produce these datasets is scaling or the ‘delta method,' which 
means applying change factors from a model to an observed dataset, often using 
quantiles. Statistical downscaling methods and bias adjustment are relatively cheap to 
run and remove the biases inherent in the GCM/RCM simulations (Maraun 2013). Note 
that in the literature, these techniques are often described as ‘bias correction’. Because 
we adjust for biases by calibrating model data against observations we prefer ‘bias 
adjustment’ or ‘calibration’. 

Bias adjustment can take many forms, however, most modern techniques use a form of 
quantile matching, whereby the quantiles of the modelled data are matched to those of 
the historical data over a defined period. These quantile differences are then applied to 
the future climate model output for that parameter (Maraun and Widmann 2018; Maraun 
et al. 2010). Bias adjustment assumes that the statistical relationships that exist in the 
historical period apply in the future period (i.e. the relationships are stationary), which 
may not be a valid assumption (Maraun 2016, 2013). However, the application of bias 
adjustment and their relative simplicity makes it suitable for understanding hydro-climate 
extremes and use in impact assessment studies and hazard projections at a local scale 
in many sectors (Peter et al. 2024; Shrestha et al. 2014; Vogel et al. 2023; Wasko et al. 
2021; Wilson et al. 2022). 

3.2.2. Reference data sets 
The bias adjustment requires reference data sets to calibrate the output of the RCM. 
These can take the form of gridded data of point observations or a reanalysis product. 
We used the Australian Gridded Climate Data (AGCD) gridded observations and the 
Bureau of Meteorology (Bureau) Atmospheric high-resolution Regional Reanalysis for 
Australia version 2 (BARRA-R2) reanalysis to provide the reference data. 

The AGCD provides daily gridded precipitation (pr) and maximum and minimum 
temperature (tasmax/tasmin) at 0.05° resolution. BARRA-R2 has a more extensive 
range of variables and so the above three variables were supplemented by maximum 
surface wind speed (sfcWindmax), downwelling shortwave solar radiation (rsds) and 
maximum and minimum surface relative humidity (hursmax/hursmin). The BARRA-R2 
data is at 0.11° (~12 km) resolution. In the future it will be possible to add additional 
variables to the bias adjusted outputs. 

3.2.3. Preprocessing 
Before the bias adjustment is implemented, all data sets must be interpolated to a 
common grid. This was chosen to be that of the AGCD 0.05° grid (~ 5 km) over the same 
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Australian domain as AGCD. This required the BARRA-R2 reference data and the RCM 
data to be interpolated to the AGCD grid which was achieved using bilinear interpolation 
(https://github.com/AusClimateService/bias-correction-data-release) . This approach 
can be expected to work best where topographical variations are less, and for data on a 
finer input grid. 

When using the BARRA-R reference data set it contains some physically unrealistic 
relative humidity values (hursmin and hursmax) of greater than 100%. For this reason, 
values above 100% in the BARRA-R data are truncated to 100% before applying the 
bias adjustment. Quality check thresholds for each variable are listed in Table 3. No 
preprocessing is applied to the other variables. 

Table 3: Minimum and maximum thresholds used in pre-processing. Bias-corrected values equal to the lower 
and upper threshold for tasmin and tasmax and the upper threshold for other variables should be treated 
with caution. 

Variable Min threshold Max threshold 

Precipitation (pr) 0 mm/day 1000 mm/day 

Min. temperature (tasmin) –20 °C 65 °C 

Max. Temperature (tasmax) –20 °C 65 °C 

Max. surface wind speed (sfcWindmax) 0 m/s 300 m/s 

Downwelling shortwave solar radiation (rsds) 0 W/m2 500 W/m2 

Min. relative humidity (hursmin) 0% 100% 

Max. relative humidity (hursmax) 0% 100% 

 

3.2.4. The bias adjustment methods 
One scaling method and two bias adjustment methods were applied for the ACS. The 
scaling approach was not considered in developing hazard information: 

• Quantile Delta Change (QDC; univariate) - scaling of observations using GCM 
change signals 

• Quantile Matching for Extremes (QME) - adjustment/calibration of RCM data and, 
• Multivariate Recursive Nested Bias Correction (MRNBC) - adjustment of RCM 

data. 

The first two are univariate methods and the last is a multivariate method. The QDC 
method uses the Equidistant Cumulative Distribution Function quantile matching method 
(ECDFm; Li et al. 2010). It is the simplest quantile-based bias adjustment method 
available. The quantile differences between future and historical model simulations are 
calculated and then applied to observations to produce a future timeseries. It has the big 

https://github.com/AusClimateService/bias-correction-data-release
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advantages of having realistic variability at all timescales and a realistic sequence of 
events, as well as the observed correlation between variables. It has the disadvantage 
of the future time series simply following the same sequence of events as the 
observations, meaning that any projected changes in typical sequencing are not 
expressed in the calibrated data. The QDC cannot produce a continuous time series of 
projections. In addition, it was applied to the raw GCM data and not the dynamically 
downscaled RCM projections for each model, providing a GCM based benchmark 
dataset. It was developed as a suitable dataset for many applications, and while it 
provides a useful benchmark for the QME and MRNBC methods to be compared against, 
it is not used in the hazard analysis in this report. The QDC technique had been used to 
develop ‘application-ready’ data which is available through the ‘Climate Change in 
Australia’ webpage (https://www.climatechangeinaustralia.gov.au/en/). For details refer 
to Irving & Macadam (2024).  

The QME method is a bias adjustment applied to the model data, and has a special focus 
on extreme events. It involves scaling the data before matching the model and 
observations by quantile (Dowdy et al. 2019; Dowdy 2023). Rather than using uniform 
quantiles, the QME method applies a logarithmic transformation so that there is higher 
resolution in the quantile bins in the upper and lower ranges. This means that quantiles 
in the upper and lower tails (extremes) can be assigned without resorting to interpolation. 
Before removing the quantile biases from the model data of interest, the bias adjustment 
factors at the extreme ends of the distribution are also modified in an attempt to avoid 
potential overfitting or an excessive influence of very rare events.  

The MRNBC is an extension of quantile matching to include inter-variable correlations 
and in addition corrects across multiple timescales in an attempt to capture low-
frequency variability present in the simulations (Johnson and Sharma 2012; Mehrotra 
and Sharma 2012, 2015, 2016). It does this by correcting the mean and standard 
deviation of the distribution as well as the persistence (lag 1 autocorrelation) at monthly, 
seasonal and annual timescales using an autoregressive lag 1 model (Srikanthan and 
Pegram 2009). This imparts observed distributional and persistence properties of the 
input fields. The multivariate aspect of the MRNBC may better capture the joint 
dependence among input variables and hence be more effective in capturing natural 
processes that contribute to the variability of a field, especially a complex one such as 
precipitation. In addition, since the MRNBC corrects across multiple timescales it may 
provide a better representation of long-term variability. This is of particular importance 
for hydrological applications where the representation of variability and persistence of 
precipitation is important for the simulation of extreme events such as floods and drought 
(Peter et al. 2024; Vogel et al. 2023). Note that only the QME and MRNBC methods were 
used for the hazards evaluation. 

https://www.climatechangeinaustralia.gov.au/en/
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Key points 

Both the univariate QME and the multivariate MRNBC technique were applied to 
regridded (i.e. preprocessed) RCM data.  

The QME method is constructed to optimally adjust very low and very high values in 
an attempt to better capture the extreme values (greater than 99th percentile and less 
than 1st percentile) of each field. 

MRNBC corrects across multiple timescales and may provide a better representation 
of long-term variability. In addition, it adjusts all variables to preserve intervariable 
correlations. 

 

3.2.5. Bias adjustment for hazard information 
The use of AGCD and BARRA-R2 data sets as reference data across the complete suite 
of CORDEX RCMs (see Table 2) results in two corresponding bias-adjusted data sets; 
those using AGCD as reference data for which only the variables precipitation (pr), 
maximum temperature (tasmax) and minimum temperature (tasmin) were adjusted and 
those using BARRA-R2 for which the seven variables listed in Table 3 were adjusted. In 
addition, for each reference data set, there are three data sets available corresponding 
to the three bias adjustment techniques detailed in Section 3.2.4. This is summarised in 
Table 4. 

Table 4: Availability of bias-adjusted variables using the two reference data sets (AGCD and BARRA-R2) 
and the three bias adjustment techniques used (QDC, QME and MRNBC). 

Dataset specifications 

Timescale daily 

Variables tasmax, tasmin, pr, rsds, hursmax, hursmin, sfcWindmax 

Observations AGCD (tasmax, tasmin, pr), BARRA-R2 (all seven variables) 

Models All RCM/GCM combinations from BoM, CSIRO 

Time range 1960-2099 (for SSP1-2.6 and SSP3-7.0) 

Spatial grid AUST-05i 

Bias adjustment QDC, QME, MRNBC 

Documentation https://dx.doi.org/10.25914/xeca-pw53 

Location NCI: /g/data/kj66 

 

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdx.doi.org%2F10.25914%2Fxeca-pw53&data=05%7C02%7Cdoerte.jakob%40bom.gov.au%7C7a16e1b1f9b6475a816c08dda9498920%7Cd1ad7db597dd4f2b816e50d663b7bb94%7C0%7C0%7C638852855509420630%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=EFwgchG7XKtZFpN68zYMeIbfMahB620RonSmWYeY%2BTU%3D&reserved=0
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The bias-adjusted data sets are essential for initialising impact models and also for the 
production of hazard indices projections. It is, however, noted that the choice of variables 
that were bias-adjusted (see Table 3) determines that not all hazards can be evaluated 
with the available data. For instance, a hazard using potential evapotranspiration which 
requires the variable Mean Sea Level Pressure (mslp) as an input could not be evaluated 
with the available data sets. Nevertheless, the available bias-adjusted data are suitable 
for a large range of hazard indices. For a hazard index that requires any combination of 
only the variables precipitation (pr), maximum temperature (tasmax) and minimum 
temperature (tasmin), then a choice needs to be made as to whether the bias-adjusted 
data using AGCD or BARRA-R2 should be used. Alternatively, it allows a comparison 
between the two reference data sets to be made. If any other variable from Table 3 is 
required then only the data using BARRA-R2 as reference is suitable.  

The availability of the QME and MRNBC bias adjustment techniques enables 
comparisons of how each bias adjustment method affects the RCM output. This is 
particularly important when evaluating hazard metrics, which often rely on several 
variables. For instance, Qiu et al. (2023) examined two heat stress indicators, wet bulb 
globe temperature (WBGT) and apparent temperature (AT), both of which have 
dependencies on temperature (T) and relative humidity (RH), however with differing T-
RH dependencies; WBGT varies more strongly with both RH and T while AT varies 
mostly with T. They demonstrated that using a multivariate bias adjustment method 
(MBCn; Cannon 2018) improved the inter-variable dependence, resulting in better 
outcomes, especially for WBGT which depends more equally on the T-RH 
interdependence. This was demonstrated for the "indirect" correction, where each 
variable was corrected prior to the calculation of the hazard metric. When using "direct" 
correction (i.e. the derived indicators were bias corrected rather than their components), 
then the univariate quantile delta matching (QDM) performed similarly to the multivariate 
method. The intercomparison of the univariate (QDC/QME) and multivariate (MRNBC) 
is crucial for the evaluation of how the methods influence the hazard metrics and is 
required for guiding their use for the end-user community. 

ACS activities have leveraged existing expertise in bias adjustment of climate projections 
such as for Climate Change in Australia (https://www.climatechangeinaustralia.gov.au/en/) 
where a Quantile Delta Change (QDC) method was applied and the National 
Hydrological Projections https://awo.bom.gov.au) which for example made use of the  
Multivariate Recursive Nesting Bias Correction (MRNBC). 

3.2.6. NPCP bias adjustment intercomparison 
Several bias adjustment methods were implemented for ACS, however the QME and 
MRNBC were chosen for the hazard information. This was motivated by an NPCP 
evaluation which showed that the ECDFm and QME performed similarly.  In this manner, 
univariate and multivariate methods were able to be compared for subsequent evaluation 
of multivariate hazard indices. For further details see AusClimateService/npcp and Irving 
et al (2025). 

https://www.climatechangeinaustralia.gov.au/en/
https://awo.bom.gov.au/
https://github.com/AusClimateService/npcp
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To assess the performance of bias adjustment methods, comparisons were undertaken 
for the calibration and cross-validation tasks. Figure 8 summarises the assessment for 
three variables: minimum temperature, maximum temperature and precipitation. The 
evaluation was undertaken for the annual mean, the seasonal cycle, interannual 
variability, cold spell duration, warm spell duration, 1st percentile, 99th percentile, 1-in-10 
year event, wet day frequency and annual number of very heavy precipitation.  
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Figure 8: Mean absolute error/bias across all grid points and all CMIP6 GCM/RCM combinations for the 
calibration assessment task (top) and based on cross-validation (bottom). The number in each cell 
corresponds to the mean absolute error/bias (with units of degrees Celsius, millimetres or days depending 
on the metric), while the colour is that bias value expressed as a percentage change relative to the RCM 
value.  

3.2.7. Bias adjustment next steps 
The bias adjustment intercomparisons described in Section 3.2.6 have been undertaken 
for three climate variables. This type of comparison should be expanded to hazards, 
especially multivariate hazards. This would enable performance-based guidance on 
choice of bias adjustment method. 

Bias adjustment techniques presented here are applied at the daily time steps although 
for some hazards higher temporal resolutions are required. We will therefore explore 
bias adjustment at subdaily (likely hourly) timesteps, building on work undertaken by 
NPCP partners and as part of the National Bushfire Intelligence Capability (NBIC). 
Hourly timestep calibration will require greater use of reanalyses or similar data, and will 
grealy increase data volumes. 

For many univariate hazards, there are applications that require information at the 
subdaily timescale. A useful example are rainfall extremes, where subdaily data would 
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enable us to both analyse hourly rainfall extremes and include information about the 
diurnal cycle in rainfall extremes.  

For multivariate hazards such as fire weather risk, subdaily data are required to study 
current and future hazards. This would allow the inclusion of information on the diurnal 
cycle of variables and also the co-occurrence of extremes. A notable example is bushfire 
danger indices, where the subdaily timescale is critical, such as the classic setup of 
prefrontal winds followed by a cool change. Indices such as FFDI based on daily data 
are insufficient, as the maximum temperature, maximum windspeed and minimum 
humidity may not be aligned in time, meaning the index can be misleading.   

Another example is on renewable energy in this Electricity Sector Climate Information 
(ESCI) Case Study, where wind farm output is affected by changes in wind through the 
day but also through extreme heat shutting down operation (Figure 9). 

 
Figure 9: Thirty-minute simulation of wind farm output (black line) for varying temperature (red line) and wind 
speed (blue line) in Western Victoria. 

Source: https://www.climatechangeinaustralia.gov.au/en/projects/esci/esci-case-studies/case-study-heat/. 

Especially for multivariate bias adjustment techniques applied at subdaily timesteps 
which are computationally expensive, machine learning approaches would be an 
attractive alternative. 

3.2.8. Choice of bias adjusted datasets 
The effect of the choice of model dataset and choice of bias adjustment is illustrated in 
Figure 10. This figure shows the average number of severe and extreme heatwave days 
for Northern Australia under GWL 3.0 based on SSP3-7.0 for 17 realisations. 

• The first panel (ACS QME) indicates the dataset used as basis for developing 
hazard information provided for the NCRA.  

https://www.climatechangeinaustralia.gov.au/en/projects/esci/esci-case-studies/case-study-heat/
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• The next two panels indicate ACS-CORDEX runs, downscaled using BARPA 
(blue shading) and CCAM (green shading). The spread is shown for the raw 
model output and three bias corrected datasets.  

• The fourth panel (magenta shade) and the fifth panel (orange) show the same 
information for ensembles used by NPCP partners (NSW and Queensland).  

• The last boxplot shows results based on application ready data where a delta 
scaling approach was applied directly to GCM data. 

In this example: 

• Bias adjustment typically leads to an increase in the number of extreme 
heatwave days. 

• Results are similar for the two RCMs used in ACS and comparable to 
estimates using the NSW dataset but use of UQ would lead to lower 
frequency estimates. 

• ‘Application ready’ data show very little spread compared to other datasets. 

 
Figure 10: Average number of severe and extreme heatwave days for Northern Australia under GWL 3.0 
based on SSP3-7.0. The colour of dots indicates the driving GCM (as per legend). 

Key points 

• Bias adjustment was applied to downscaled climate projections (RCM). The 
exception is QDC scaling which was applied to GCM data directly. These 
projections are only available for discrete future time periods resulting in a non-
continuous timeseries over the projection period (2015-2100). The sequencing of 
weather events is determined by those of the observations in the reference 
period resulting in no change in weather sequencing / variability (from 
observations). This data is available through Climate Change in Australia. 

• Raw RCM output has the advantage that it is available for a wider range of 
variables than the bias adjusted data but it has not been adjusted for biases. For 
applications where large ensembles are of high value and biases are less critical, 
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this might be a suitable choice. Not all variables have been calibrated, e.g. for 
Mean Sea Level Pressure only the raw data are available. 

• RCM data that has undergone bias adjustment using the (univariate) QME are 
best suited for applications where single-variable hazards are concerned, e.g. 
heat, especially where extreme events are important. For such applications they 
may be superior to data that has been bias corrected using the (multivariate) 
MRNBC technique. 

• Depending on the reference data used, the MRNBC technique has been applied 
to calibrate 3 variables against AGCD and 6 variables against BARRA-R. The 
choice here is therefore guided by the set of variables required. Typically, the 
MRNBC adjusted data are judged best suited for assessing multivariate hazards. 
However, for hazard specific applications such as flooding or tropical cyclones, 
which are driven by highly heterogeneous fields such as rainfall and wind, the 
data used for bias correcting needs to be carefully selected. For example, 
BARRA-R data may not be suitable for these hazards, given its limitations in 
reproducing rainfall and wind extremes. 

• Initial evaluations indicate that there may also be value in using the MRNBC 
technique for single variable hazard indices, such as the Standardised 
Precipitation Index, SPI (see section 5.1.2) which is calculated for 3, 12 and 24-
month periods 

• For risk assessments that combine information on multiple hazards, the choice of 
bias adjustment technique may be guided be the desire to use a consistent basis 
for deriving the hazard information. 

• There is merit in combining the insights from analyses of multiple streams of 
data, i.e. GCM data, raw RCM output and bias adjusted RCM data, potentially in 
combination with storylines. 

 

3.2.9. Sea-level rise projections  
For coastal hazards, projections of sea level rise are required. Sea level rise projections 
were produced (Zhang and McInnes 2024) for the National Climate Risk Assessment 
based on IPCC AR6 (Fox-Kemper et al. 2021). Multi-model ensemble median and 
percentiles projections from IPCC AR6 have been updated for two components to 
provide estimates of changes in mean sea level, relative to the local land level, under 
different future emission scenarios.  

The first component is the Vertical Land Motion (VLM) component. While the fifth 
assessment report of the IPCC (AR5) and the ‘Special Report on the Ocean and 
Cryosphere under Climate Change’ (SROCC) incorporated only the VLM effect due to 
Glacial Isostatic Adjustment (GIA), the sixth assessment report (AR6) included GIA as 
well as estimation for local VLM due to other factors such as tectonics and groundwater 
extraction. However, it is noted that the IPCC states that ‘depending on location, there is 
low to medium confidence’ in these GIA and VLM projections and ‘In many regions, 
higher-fidelity projections would require more detailed regional analysis’ (Fox-Kemper et 
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al. 2021). For the Australian region notable differences in regional sea-level projections 
can be found between AR5 and AR6, with the VLM component being a key factor. 
Regional features of the AR6 VLM component are not supported by (or in direct 
contradiction with) available VLM observations (Naish et al 2024), including a local 
uplifting VLM (up to 25 cm by 2100) in the Torres Strait. To address this, VLM from AR5 
and SROCC due to GIA only was swapped in.  

The second component is dynamic sea level (Kopp et al 2014). Dynamic sea level 
components were derived directly from the ensemble of CMIP6 climate models to better 
represent coastal sea level around Australia. 

Indices  

Annual mean sea level rise from present to 2150, relative to 1995 – 2014 baseline 
period.  

Data sources  

CSIRO data portal (DOI https://doi.org/10.25919/rwma-zw18)  

Outputs  

netcdf files available on NCI at g/data/ia39/ncra/coastal/MSL:  
 

• Gridded (1x1 deg) sea level projections for Australian region ('yearly_final' files) 
and at points along the Australian coastline ('continentborder' files) for SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5  

• Annual mean sea level for SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5 at ANCHORS tide gauges ('anchors' files)  

• Gridded difference between chosen sea-level increments representing global 
warming levels (refer Section 2.7) for Australian region at 1x1 degree and at 
points along the Australian coastline.  

3.2.10. Developing climate projections data for hazard information 
The outputs provided for NCRA were computed on a 13-member downscaled and bias-
adjusted ensemble (Table 2). As ACS activities progress further and ensembles are 
expanded upon, the NCRA indices will be recomputed on the larger ensemble and with 
multi-variate bias adjustment.  

Convection permitting models are crucial for the accurate representation of hazards such 
as flash flooding, damaging wind, and extreme rainfall (Wasko et al 2024). Examples of 
where the use of convection permitting models could add value include: improvements 
in modelling extreme hourly rain rates, and sea level pressure and wind speeds for 
tropical cyclones. 

The development, evaluation runs and testing of models has been completed. Prototype 
datasets are currently being produced so that once downscaled CMIP7 projections 

https://doi.org/10.25919/rwma-zw18
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become available, hazard indices could potentially be based on convection permitting 
models. 
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4. Hazard Teams 
For each of the priority hazards, a Hazard Team was formed with a Team Lead, an 
Alternate Lead, and Hazard Team members. While these were ACS staff, we also 
included subject matter experts in the field (including experts from academia) without an 
ACS allocation to act in an advisory capacity. 

There were twelve Risk Teams that required input from the Hazard Teams. These twelve 
risks were organised into Risk Clusters of two or three risks, e.g. Primary Industries, 
Natural Environment, Water security, etc. Risk Liaisons were identified for each risk 
cluster. 

To streamline the interactions between Hazard Teams and Risk Clusters, Hazard 
Knowledge Brokers were identified on the hazard side (Figure 11). There was a 
designated coordinator to facilitate interactions but typically communications occurred 
directly between Hazard Brokers and Risk Liaisons. This setup was largely successful 
in enabling the teams to deliver on time, critical to that success were existing strong 
relationships between Hazard Knowledge Brokers and Risk Liaisons. 

4.1. Product planning 
In the absence of clear requirements, Hazard teams developed a summary and options 
for hazard indices/metrics that they could develop and deliver. This information was put 
together to facilitate discussions with Risk Teams, many of which were new to the tasks 
and did not have specifications on the information that they required for their risk 
assessments. 

These plans included information on:  

• team responsible for providing the information 
• proposed indices and metrics (with precedence for use) 
• proposed input data (e.g. AGCD, BARRA, CMIP6) 
• spatial and temporal resolution and domain for which hazard information would 

be developed 
• analysis form (e.g. map, time series, summary statistics) 
• location where hazard information was to be made available 

The Risk Teams then identified and prioritised their requirements against the proposed 
set of outputs. 
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Figure 11: Schematics illustrating the structure for interactions between Hazard Teams and Risk Teams. 

4.2. Challenges navigated & learnings 
A debrief of staff involved found that pressures to deliver early without a clear roadmap 
and requests for additional hazard metrics at short notice, as well as unclear decision-
making roles, responsibilities and boundaries contributed to communication delays from 
the Risk Teams and burnout within the Hazard Knowledge Brokers and the Hazard 
Teams.  

Future NCRAs should create a clear roadmap, allocate sufficient time for tasks to be 
completed, have well-defined roles and responsibilities to support decision-making 
processes, as well as a single source of truth to facilitate communication. Along with a 
staged delivery approach, this would support a more seamless knowledge brokering 
process, overall.  The requirements that the NCRA set fell ahead of the initial ACS 
delivery which put additional pressure on all teams. 
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5. By Hazard 
This section provides detailed information about key climate variables (temperature, 
rainfall and sea level) and priority hazards. While activities are ongoing, this report 
provides a snapshot in time, summarising the development of hazard information for the 
first National Climate Risk Assessment. 

Where feasible, each section provides a definition of the hazard. We provide definitions 
of indices used, including equations and relevant citations, and provide caveats and 
discuss options for additional indices for future work. Current maturity (and gaps) are 
discussed alongside the use of hazard information for risk assessments. Where 
available, we include heatmaps to summarise changes in an index (e.g. the hottest day 
of the year, Figure 13) relative to GWL 1.2. Heatmaps illustrate these changes for each 
NCRA region (and Australia as a whole) and for each of the 13 ensemble members, 
giving an indication of the spatial variability and the spread across models. 

Table 1 lists the hazards included in this section together with relevant projections 
information, information on bias adjustment applied, location of data on NCI and links to 
supporting documentation on GitHub. 

5.1. Hot extremes 

5.1.1. Extreme temperatures and heatwaves 

Contributors 

Mitchell Black (Lead), Cassandra Rogers 

Indices 

Extreme temperatures in Australia pose a threat to health, infrastructure, agriculture, and 
the natural environment. Heatwaves, characterised as extreme heat that lasts for three 
or more days, cause more loss of life in Australia than any other extreme weather hazard 
(Handmer et al. 2018).  

A range of indices were calculated for the NCRA to quantify changes in extreme 
temperatures and heatwaves, as summarised in Table 5. 
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Table 5: Description of the various indices calculated for the NCRA to define heatwaves and extreme temperatures. 

Index Description Temporal 
resolution Reference 

He
at

w
av

es
 

HWF Heatwave frequency – number of days per 
year experiencing heatwave conditions annual Nairn and Fawcett 

2015 

HWD Heatwave duration – length of the longest 
heatwave annual Nairn and Fawcett 

2015 

HWN Heatwave number – number of separate 
heatwave events in a given year annual Nairn and Fawcett 

2015 

HWAtx Heatwave peak temperature – hottest day of 
the hottest heatwave annual Nairn and Fawcett 

2015 

Ex
tre

m
e 

te
m

pe
ra

tu
re

  

TXm Annual mean daily maximum temperature annual ETCCDI Climate 
Change Indices 

TXx Annual maximum daily maximum 
temperature annual ETCCDI Climate 

Change Indices 

TXge35 Days above 35 °C annual ETCCDI Climate 
Change Indices 

TXge40 Days above 40 °C annual ETCCDI Climate 
Change Indices 

TXge45 Days above 45 °C annual ETCCDI Climate 
Change Indices 

TNle02 Days below 2 °C annual ETCCDI Climate 
Change Indices 

 

In Australia, heatwaves are monitored and forecast by the Bureau of Meteorology using 
the Excess Heat Factor (EHF), which was designed to identify heatwaves based on the 
potential impact on human health (Nairn and Fawcett 2015). The EHF is calculated from 
the mean daily temperature, calculated as the average of the daily minimum and 
maximum temperatures. This incorporates both how high temperatures reach during the 
day, as well as how low night-time temperatures drop, allowing the body to cool off 
overnight. A three-day average of mean daily temperature is used to calculate the EHF, 
as prolonged exposure to heat exacerbates the impact on human health. 

The EHF is calculated based on the difference between the three-day average daily 
mean temperature and the 95th percentile of daily mean temperature calculated over the 
period 1985–2014. A three-day average above the 95th percentile indicates that 
temperatures are unusually hot relative to the reference period. This temperature 
anomaly is then multiplied by a factor related to the difference between the three-day 
mean temperature and the previous thirty days. This enhances the EHF in cases where 

https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
https://www.mdpi.com/1660-4601/12/1/227
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
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the preceding period has been relatively cool, as an abrupt increase in temperature can 
have a larger impact on health than where bodies are more acclimatised to high 
temperatures. Periods of consecutive days with EHF > 0 are combined into heatwave 
events.  

The Bureau of Meteorology further classifies heatwaves into three severity levels — low-
intensity, severe and extreme (Table 6) — based on how the EHF values compare 
against the severity threshold EHF85 (which is the 85th percentile of all the positive EHF 
values within the climatology period 1985–2014): 

EHFsev = EHF / EHF85 

Further details on how the EHF is calculated is provided in Nairn and Fawcett (2015). A 
description of heatwave severity ratings is summarised in Table 6 and details can be 
found at http://www.bom.gov.au/australia/heatwave/knowledge-
centre/understanding.shtml. 

Table 6: Description of the heatwave severity ratings used by the Bureau of Meteorology (BoM 2024). 

Heatwave classification EHFsev threshold Description 

Low-intensity 0 < EHFsev < 1 Low-intensity heatwaves are 
frequent during summer. Most 
people can cope during these 
heatwaves. Heatwave warnings are 
not issued for low-intensity 
heatwaves. 

Severe 1 ≤ EHFsev < 3 Severe heatwaves are less frequent. 
They are likely to be more 
challenging for vulnerable people. 
This can include older people, 
particularly those with medical 
conditions. 

Extreme 3 ≤ EHFsev  Extreme heatwaves are rare. They 
are a problem for people who don't 
take precautions to keep cool – even 
for healthy people. Anyone who 
works or exercises outdoors can be 
at risk. 

  

Datasets 

All of the indices identified in Table 5 were calculated for each of the 13-member 
ensemble of regional climate model (RCM) simulations that were available at the time of 
analysis. These RCM datasets were bias adjusted using the Quantile Matching for 

http://www.bom.gov.au/australia/heatwave/knowledge-centre/understanding.shtml
http://www.bom.gov.au/australia/heatwave/knowledge-centre/understanding.shtml
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Extremes technique (Section 3.2.4) and provided daily temperature fields at  ~5 km 
resolution across Australia. Accordingly, the NCRA was provided with the following: 

1. Daily/annual timeseries of each hazard index on the 5 km model grid, spanning 
1980–2100, for each input RCM dataset. 

2. Hazard index datasets were further aggregated per Global Warming Level (1.2, 1.5, 
2.0 and 3.0 °C) using bespoke python code.  

3. Ensemble maps and regional statistics — expressed as absolute values and 
changes relative to GWL1.2 °C (e.g., Figure 12 and Figure 13) — were computed 
per the methodology outlined in Technical Box 1.  

All data were made available to the NCRA via the National Computational Infrastructure 
(NCI) (hosted at: /g/data/ia39/ncra/hazards/heat/<data/figures>/) and the supporting 
code is documented on the ACS heat team's GitHub page. 

Results 

A significant amount of data and synthesis was created for each of the extreme 
temperature and heatwave indices identified in Table 5. Accordingly, only two indices 
are highlighted here — the 'hottest day of the year' and the 'number of heatwave days 
per year'  — as these were the two indices most commonly utilised across the NCRA 
projects. 

Hottest day of the year 

 
Figure 12: Change in the hottest day of the year. 

 

https://github.com/AusClimateService/gwls
https://github.com/AusClimateService/hazards-heat
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Figure 13: Sample heatmap showing TXx (hottest day of the year) for GWL 3.0 °C relative to GWL 1.2 °C, averaged 
across the different NCRA study regions. Here, results are presented for each of the 13 ACS regional climate model 
simulations, as well as the ensemble median. 

Key finding: the hottest day of the year is projected to increase across Australia 
(very high confidence).  

 

Number of heatwave days per year 

After consultation with the NCRA, the index representing the 'number of heatwave days 
per year' was further refined to only include heatwave days classified as severe or 
extreme (i.e., does not include low-intensity heatwave days) (Figure 14 and Figure 15). 
This aligned the index with the Bureau's operational heatwave service, which only 
provides public warnings for severe or extreme heatwaves. 

 
Figure 14: Change in the number of days experiencing severe or extreme heatwave conditions. 
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Figure 15: Sample heatmap showing the average number of days per year experiencing severe or extreme heatwave 
conditions, averaged across the different NCRA study regions and expressed as the change between GWL3.0 °C and 
GWL 1.2 °C. Here, results are presented for each of the 13 ACS regional climate model simulations, as well as the 
ensemble median. 

Key finding: the number of days experiencing severe or extreme heatwave 
conditions is projected to increase across Australia (very high confidence). The 
projected increases are greatest in northern parts of Australia. 

 

Limitations and proposed future work 

The heatwave and extreme temperature indices provided to the NCRA are based on dry-
bulb temperature only; they do not account for the additional health impact when 
heatwaves coincide with high humidity, which decreases the ability of humans to lose 
heat by sweating and increases overall health impacts. The indices also assume a static 
temperature threshold for identifying heatwaves based on the distribution of temperature 
in the recent past (1985–2014). When considering health impacts, these thresholds may 
not be appropriate in a significantly warmer climate as they do not account for potential 
acclimatisation to heat.  

There is ongoing work within the ACS heat hazard team to 1. extend the above analysis 
to include additional ACS and non-ACS RCMs, 2. develop wet-bulb temperature 
datasets (historical and future projections), and 3. investigate the suitability of heatwave 
definitions under a changing climate. 

  



 CLIMATE HAZARD INFORMATION DEVELOPED FOR USE IN CLIMATE RISK ASSESSMENT 

 

56 

 

References 

Bureau of Meteorology (2024) What is a heatwave? 
http://www.bom.gov.au/australia/heatwave/knowledge-centre/understanding.shtml 
Accessed 20-12-2024 

ETCCDI (2009) Climate change indices: Definitions of the 27 core indices. 
https://etccdi.pacificclimate.org/list_27_indices.shtml Accessed 03-06-2025 

Handmer J, Ladds M, Magee L (2018). Updating the costs of disasters in Australia. 
Australian Journal of Emergency Management, April (40-46) 

Nairn J, Fawcett R (2015) The Excess Heat Factor: A Metric for Heatwave Intensity 
and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2(1): 
227-253; https://doi.org/10.3390/ijerph120100227 

 

5.1.2. Drought and changes in aridity 

Contributors 

David Hoffmann (Lead), Jess Bhardwaj, Tess Parker 

Drought is a recurring natural phenomenon characterised by a prolonged period of 
abnormally dry conditions, where the amount of available water is insufficient to meet 
normal needs. Drought can have profound impacts on Australian communities and 
ecosystems with far-reaching consequences on agricultural, water management, 
economic and public health sectors (Van Dijk et al. 2013). For example, the 2017-2019 
Tinderbox Drought left an indelible mark, with an estimated economic cost of $53 billion 
(Wittwer and Waschik 2021), positioning Australia as the fifth most drought-affected 
country globally (González Tánago et al. 2016). Beyond its immediate effects, drought 
acts as a catalyst for heatwaves and severe fire seasons (Ruthrof et al. 2016). The 
complex and multifaceted impacts of drought make it difficult to derive a universal 
definition that can be applied consistently for many purposes. Instead, drought is often 
categorised by impacts and propagation through the hydrological cycle and timescales 
beginning with meteorological drought (rainfall deficiency), agricultural drought 
(impacted vegetation/crop yields), hydrological drought (reduced streamflow/ 
groundwater storages) and ending with socio-economic drought (declining socio-
economic wellbeing), (McKee et al. 1993; Wilhite and Glantz 1985).  

While droughts are synoptically driven phase shifts in water availability, aridity is a more 
defining and sustained feature of a region’s climate related to the long-term ratio between 
moisture availability and supply. Shifts in a region’s aridity can be indicative of long-term 
declines in rainfall or increases in evaporative demand or both. Such shifts can have 
impacts on a region’s water availability, soil quality, biodiversity, fire risk and agricultural 
efficiency (Greve et al. 2019). 

https://etccdi.pacificclimate.org/list_27_indices.shtml
https://doi.org/10.3390/ijerph120100227
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Due to the far-reaching consequences of drought and the potential for changing aridity 
in certain parts of Australia, the ACS recognises these as priority hazards. A range of 
relevant indices and analyses were computed for Australia’s first NCRA. 

Indices 

Standardised Precipitation Index (SPI) 

The Standardised Precipitation Index (SPI) is a widely used index that measures the 
amount of precipitation over a specific period relative to the long-term average for that 
period. It is typically used to identify and quantify the severity of droughts making it a 
valuable index in water resource management, agriculture, and climate studies for its 
simplicity and effectiveness in drought monitoring (McKee et al. 1993). Strictly speaking 
the SPI is a meteorological drought measure. 

The SPI uses a historical base period of rainfall to derive a probability distribution that 
observed rainfall can be fitted to and transformed into a normal distribution such that SPI 
values are denoted by z-scores that indicate the number of standard deviations rainfall 
is above or below a long-term median. This approach makes it possible to compare 
rainfall between different locations and time scales. Positive SPI values indicate wetter-
than-average conditions, while negative values indicate drier-than-average conditions.  

In delivering for the NCRA, the drought and aridity team analysed 3-month SPI 
(calculated on the basis of rainfall aggregated over rolling 3-month windows) by 
evaluating changes in the proportion of time spent below a commonly accepted drought 
threshold of SPI3 ≤ -1 for GWLs 1.5, 2.0 and 3.0 relative to GWL1.2. This metric was 
calculated using the ACS CMIP6 downscaled and AGCD-QME bias-adjusted suite of 
ensemble members.  

Rainfall Percentiles 

Rainfall percentiles indicate the value below which a certain percentage of observed 
rainfall amounts fall, based on a historical reference period. A z-score/SPI threshold of -
1 corresponds to the point in a standard normal distribution where 15.87% of values fall 
below it. Thus, evaluating the 15th percentile threshold is an effective way to investigate 
threshold changes between GWLs. The 15th rainfall percentile was computed on 3-month 
timescales similar to SPI and is an absolute value index (mm). Shifts in this threshold 
highlight changes in the lower tail of the precipitation distribution and, combined with the 
percent time of SPI3 ≤ -1, provide insight into both threshold shifts and time spent below 
the threshold across different GWLs. This metric was calculated using the ACS CMIP6 
downscaled and AGCD-QME bias-adjusted suite of ensemble members.  

Aridity Index (AI) 

The Aridity Index (AI) is a numerical indicator used to quantify the dryness of a region. 
The atmospheric equation of AI was used to calculate the ratio of annual precipitation to 
potential evapotranspiration (PET). Lower values of AI indicate more arid conditions, 
while higher values suggest more humid conditions. The AI is commonly used in 
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climatology, agriculture, and environmental studies to classify climates, assess water 
availability, and manage land and water resources (UNEP 1992).  

In delivering for the NCRA, the drought and aridity team analysed absolute changes in 
AI values as well as changes across categories (Hyper-Arid, Arid, Semi-Arid, Dry, Sub-
Humid, Humid) for GWLs 1.5, 2.0 and 3.0 relative to GWL1.2. Since PET is not yet a 
bias-adjusted output from the ACS CMIP6 downscaled suite, this metric was calculated 
using the National Hydrological Projections (NHP1) CMIP5 downscaled and hydrological 
impact modelling outputs (Srikanthan et al. 2022).   

The calculation, relevant scripting and ensemble members of these indices are 
summarised in Table 7. After deriving each index, the shared GWL function, developed 
for inter-hazard team use, is applied to slice indices to the relevant GWL for each driving 
model. Plotting and regional statistical analysis is also computed using shared functions 
described in section 2.6. 

Table 7: Drought and aridity indices, calculation, relevant scripts and ensemble members. 

Index with link to 
relevant scripting Calculation Ensemble members 

Standardised 
Precipitation Index 
3-month aggregation 

This approach utilises the gamma distribution as 
originally proposed by McKee et al., (1993), where 
additional methological details can also be found. 
• Historical rainfall from a base period of 1965-2014 is 

used to estimate gamma distribution fit parameters 
(using the maximum likelihood approach). 

• A cumulative gamma probability distribution is 
derived with a necessary extension for zero value 
observations. 

• Cumulative probabilities are converted to a z-score 
(SPI value) using inverse normal approximation. 

ACS CMIP6 
downscaled and 
AGCD-QME bias-
adjusted outputs 

15th percentile 
threshold 
3-month aggregation 

• Relevant base period or GWL over which to derive 
15th percentile is selected. 

• Rainfall is ranked and the amount which 
corresponds to 15% of observations falling below it 
in the rainfall period is calculated. 

Aridity Index 
Atmospheric-based 

• Rainfall and PET is aggregated to annual totals. 
• Ratio of annual rainfall to PET is derived and 20-

year averages calculated. 
• Repeated for different bias-adjusment methods in 

NHP1 CMIP5 suite. 

NHP1 CMIP5 
downscaled and 
hydrological impact 
modelling outputs 

 

Due to the historical paucity of observations in central interior Australia, all our final 
outputs apply the standard AGCD quality mask which limits the contribution of spurious 
values to regional averages and as non-plausible spatial features. A list of further 
Frequently Asked Questions (FAQs) relevant to this analysis have been summarised in 
the FAQ section of the drought and aridity github. 

  

https://github.com/AusClimateService/gwls/tree/main
https://github.com/AusClimateService/plotting_maps
https://github.com/AusClimateService/hazards-drought/blob/main/spi/spi.py
https://github.com/AusClimateService/hazards-drought/blob/main/spi/spi.py
https://github.com/AusClimateService/hazards-drought/blob/main/percentiles/percentiles.py
https://github.com/AusClimateService/hazards-drought/blob/main/percentiles/percentiles.py
https://github.com/AusClimateService/hazards-drought/blob/main/aridity/calculate_Aridity_Index_NHP1.py
https://github.com/AusClimateService/hazards-drought#faqs
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Results 

Spatial change plots, regional statistics and bespoke analyses were passed forward to 
the NCRA team, some of which are visualised below. Figure 16 and Figure 18 
summarise spatial changes in SPI and AI outputs. Figure 17 summarises regional 
statistics for changes in SPI for GWL 3.0. The 10th and 90th ensemble members (second 
driest/wettest, marked by red/blue annotations) were used to provide plausible ranges 
of change beyond the median. Regions where more than 66% of all our ensemble 
members agree on the sign of the projected change are indicated in bold (Mastrandrea 
et al. 2011). Additionally, external users in the NCRA risk teams could scrutinise the 
regional summaries provided in this format to select regionally relevant ensemble 
members for storylining.  

 
Figure 16: Change in time spent in drought relative to GWL 1.2, from left to right: the proportion of months 
below SPI -1 for GWL1.2 followed by relative percent changes in this time for GWL1.5, 2.0 and 3.0. 

 

Figure 17: Change in time spent in drought aggregated by region and by ensemble member. Blue/red dot 
annotations indicate the 10th and 90th percentile ensemble member for each region. 
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Figure 18: Change in Aridity Index relative to GWL 1.2, from left to right: the AI categories followed by 
relative percent changes in AI values for GWL1.5, 2.0 and 3.0. 

Analysis from our indices and regional statistics were combined with other lines of 
evidence that analysed changes to drought in a warming world to provide summary 
statements (Kirono et al. 2020; Ukkola et al. 2020; IPCC 2023, 2021; Earth Systems and 
Climate Change Hub 2020; CSIRO and BoM 2015). Some of these key findings are 
detailed below. 

Key findings 

• Nationally, there is low to medium confidence in overall increased time spent 
in drought for GWL2.0 and 3.0 with considerable regional differences.  

• There is moderate to high ensemble agreement in overall increased time 
spent in drought for southern parts of SA, VIC and south-west regions of WA 
South consistent with observed drying trends over recent decades.  

• There is little ensemble agreement in the sign and magnitude of change in 
time spent in drought for regions of the tropical North and inland NSW. 

• Aridity analysis indicates that an increased time spent in drought for south-
west regions of WA South is likely to be accompanied by longer term shifts 
towards a more arid climate, which are more pronounced under GWL 2.0 and 
3.0. 

 

Limitations and proposed future work 

The drought and aridity analysis conducted for NCRA focusses solely on meteorological 
drought and only on one metric which is the proportion of time below a threshold. 
Considering the multi-faceted impacts of drought, future indices for exploration are the 
Standardised Precipitation and Evapotranspiration Index (SPEI), Standardised Soil 
Moisture index (SSMI), Standardised Runoff Index (SRI), Evaporative Demand Drought 
index (EDDI) and the Evaporative Stress Index (ESI). The analysis of these indices can 
further be expanded upon by considering metrics beyond proportion of time alone, such 
as shifts in intensity, frequency and duration.  

The drought and aridity team is also interested in investigating flash drought. While 
prolonged droughts garner attention, flash droughts, rapidly intensifying dry spells, also 
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pose significant challenges. Under conducive synoptic conditions, agricultural regions 
can transition from average conditions to severe drought within weeks (Parker et al. 
2021). These abrupt shifts combined with a warming climate demand adaptive strategies 
to mitigate their impact on crops, livestock, and water availability. Future analysis of flash 
drought will involve investigating the variability of evapotranspiration through a first-order 
second moment decomposition of four major driving variables as per the approach of 
Hobbins et al., (2012) and Hobbins (2016). 

Additionally, given the cascading nature of drought, there is also significant scope for 
inter-hazard team collaboration, investigating the interplay of heat, fire and drought-
breaking rainfall in historical and future droughts in Australia.  
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5.1.3. Bushfire 

Contributors 

Naomi Benger (Lead), Aurel Griesser, Alex Evans, Richard Matear 

The priority hazard of bushfire, grassfire and air pollution is referred to as bushfire for 
brevity. There are currently no projections of fire related air pollution for Australia. 

Past bushfire risk assessments and climate hazard summaries, such as those provided 
in (CSIRO and BoM, 2015; Lawrence, et al., 2022), have focussed mainly on the fire 
weather aspect of bushfire risk, generally measured using the Forest Fire Danger Index 
(FFDI) for Australia (BoM, CSIRO, Dept Ag, Water, and Environment, 2021; BoM, 
CSIRO, AEMO, 2021a). While these assessments clearly state that FFDI is only a partial 
indicator of risk, it was recognised that this approach alone would not suffice for the 
NCRA.  

For a holistic bushfire hazard assessment, we consider the four necessary elements: 
sufficient biomass, its availability to burn, fire weather, and ignition, as defined in 
(Bradstock, 2010). The fire climate classes (FCCs), developed for the NCRA (Benger, 

http://www.bom.gov.au/research/publications/researchreports/BRR-061.pdf
http://www.bom.gov.au/research/publications/researchreports/BRR-061.pdf
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Griesser, & Evans, A class-y approach to assessing future bushfire risk, 2024), provide 
a framework to assess the changing bushfire risk incorporating all elements for the first 
time at this scale. The boundaries of the FCCs are defined using temperature and rainfall 
which are available from climate models, allowing us to look at the potential future 
vegetation distribution. Climate and ecology research results characterise the FCCs and 
describe influences on fire risk.  

Using FFDI in isolation has been highlighted as an issue from an ecological perspective 
(Clarke, et al., 2020), and from fire behaviour and process perspective (Jones & Ricketts, 
2024; Peace & McCaw, 2024; Tory, Cruz, Matthews, Kilinc, & McCaw, 2024). Other 
contributors to bushfire, such as drought and heat, are commonly examined in climate 
change attribution studies for significant bushfires in Australia and internationally 
(Kirchmeier-Young, P., Zwiers, Cannon, & S., 2019; van Oldenborgh, et al., 2021) but 
have until now not been incorporated into bushfire risk assessments. 

The approach of using FCCs was developed based on consultation with experts from 
fire science, ecology, forestry, fire agencies, and climate experts. Given the constraints 
for delivery and the strong support for a more holistic view of bushfire risk, this was 
considered a practical and acceptable solution with significant development potential 
(Benger, Griesser & Evans 2024). Both the FCC design and analysis methodology were 
informed through expert engagement and feedback, detailed in (Benger, Griesser & 
Evans 2024) and (Benger et al 2025) respectively.  

Application of FCCs for bushfire risk assessment 

The FCCs provide an interpretive framework to perform a qualitative hazard assessment 
(with aspirations to develop indices for quantitative risk assessments). The assessment 
examines both the projected shifts in FCC boundaries, as shown in Figure 19, and 
projected changes to the drivers which increase the risk of extreme fires, listed for each 
of the FCCs in Table 8.  

 
Figure 19: FCCs using MRNBC for GWL1.2 (L) and GWL3.0 (R) with hashing where GWL3.0 differs to 
GWL1.2. 
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Details for computing the FCC boundaries shown in Figure 19 are available in Benger 
(2024). 

Table 8: FCC drivers of extreme fires. 

Fire climate class Drivers of extreme fire 

Tropical savanna 
• Increased rainfall 

Arid grass and woodlands 

Grassland • Increased rainfall followed by drought 

Wet forest Increases to: 
• fire weather 
• heatwave 
• drought Dry forest 

 

FCCs hazard assessment summary 

The full assessment is available in Benger et al 2024 and Benger et al 2025 with specific 
regional risk statements, confidence ratings, and references.  

Here we will provide a summary of: 

• The intermediate assessment based on class shifts (Table 9), drawing on the 
shifts shown in Figure 19.  

• The intermediate assessment based on changes to drivers (Table 10), using the 
assessments on changes to heatwaves (discussed in Section 5.1.1), drought 
(discussed in Section 5.1.2), and fire weather (Section 5.1.3) 

• Combined overall assessment (Table 11).  

Assessment based on class shifts 

All evidence for these assessments and confidence levels is provided in Benger et al 
2025. The shifts shown in Figure 19 specific to the choice of GCM, other model 
selections may result in variations to the regions. The table below summarises the shifts 
by region, and the implications on the risk of extreme fire.  
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Table 9: Summary of the changes to extreme fire risk based on fire climate class shifts. 

Region Shift Change Confidence 
South and east Contraction of 

regions which 
promote forest 
growth, shift to 
grassland (forest 
die off possible). 

↑ then ↓ 

(increased fuel 
availability then 
overall reduction in 
biomass) 

High 

East (but west 
of the Great 
Dividing 
Range) 

Expansion of 
regions which 
promote forest 
growth (forest may 
encroach on grass 
areas). 

↑ 

(increased 
biomass) 

Moderate 

Northern 
Australia 

- - High confidence in 
relationship between 
rainfall and fire, low 
confidence in rainfall 
projections (future 
FCC boundaries). 

 
Assessment based on driver shifts 

For FCCs in the northern parts of Australia, rainfall is the main driver of increases to fire 
intensity (through the responsive enhanced vegetation growth). Rainfall projections are 
highly variable, particularly monsoonal regions, and previous research has found that it 
is likely that interannual and interdecadal variability will continue to play a significant role 
in fuel loads in future (Beringer, Hutley, Tapper, & Cernusak, 2007; Liedloff & Cook, 
Modelling the effects of rainfall variability and fire on tree populations in an Australian 
tropical savanna with the Flames simulation model, 2007; Liedloff & Cook, The 
interaction of fire and rainfall variability on tree structure and carbon fluxes in savannas: 
Application of the FLAMES model., 2011). While it is not possible to make an 
assessment about rainfall changes with any confidence, the relationship between rainfall 
and vegetation is very well understood, so conditional information can be provided for 
potential changes to rainfall.  

For the forested regions of the south and east, changes to the behaviour of heatwaves, 
drought, and fire weather will influence the risk of extreme fires. Changes to heatwaves 
and drought have been discussed in Sections 5.1.1 and 5.1.2 respectively. The number 
of days in heatwave is projected to increase over all forested areas. The number of days 
in drought is projected to increase over southern regions, but a mixture of increase and 
decrease in the east as some regions are projected to have increased rainfall (generally 
to the west of the Great Dividing Ranges).  
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Key findings 

Multiple contributing factors will change the risk of extreme fires across Australia.  

Forest regions will likely see an acute increase in extreme fire risk (more acute than 
estimated by fire weather alone). Ecosystem prosperity will be hampered by climate 
change; warmer and dryer conditions for southern Australia will result in a reduction in 
forest coverage and long-term reduction in fire intensity in some currently forested areas. 

In monsoonal and arid regions, rainfall is associated with vegetation growth and precedes 
extreme fire activity. Better understanding of changes to rainfall patterns is needed to 
better understand future fire in these regions. 

 

 
Figure 20: Difference in median number of days of FFDI > 50 from GWL1.2 to GWL3.0. 

The frequency and severity of dangerous fire weather conditions (assessed using FFDI) 
is increasing in forest areas, especially during spring and summer; this is at least partly 
attributed to climate change (Abram, et al., 2021; Dowdy & Pepler, 2018; Harris & Lucas, 
2019).  

There is high confidence that future fire weather in southern and eastern Australia will 
be more extreme (Lawrence, et al., 2022). These results are supported by our analyses, 
Figure 20 shows that the number of days of severe fire weather (given by FFDI > 50) 
increase nationally from GWL1.2 to GWL3.0. 

The analysis done by van Oldenborgh, et al. (Attribution of the Australian bushfire risk to 
anthropogenic climate change, 2021) showed that at GWL2.0 the fire weather index 
observed during Black Summer becomes around 4 times more likely than in the pre-
industrial climate.  
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In Table 10 a summary of the changes to drivers of extreme fire weather for each FCC 
is provided. 

Table 10: Summary of changes to drivers of extreme fire for each of the fire climate classes. 

Class Driver Change 

Tropical savanna Rainfall (monsoonal) ↑* 

interannual and interdecadal 
variation still plays a dominant 
role, high uncertainty in rainfall 

projections. 

Arid grasses and 
woodlands 

Rainfall (sporadic) More evidence needed: regionally 
specific rainfall drivers need to be 

investigated. 

Grassland Biomass productivity/fuel 
load 

More evidence needed: regionally 
specific rainfall drivers need to be 
investigated. Increased drought in 

the south may decrease 
productivity. But increasing 

incidence of high rainfall preceding 
drought may increase risk of fire. 

Wet and Dry Forest Extreme fire weather ↑ 

 Heatwave ↑ 

 Drought ↑ in south 
mixed in east (areas of ↑ and ↓) 
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Holistic assessment 

Combining the results of the intermediate assessments on FCC shifts and changes to 
drivers of extreme fire behaviour, our national overview of changes to risk of extreme fire 
across Australia is provided in Table 11. 

Table 11: Regional overview of changes risk of extreme fire. 

Region Change in risk of extreme fire Confidence 
South and east ↑↑ then ↓ 

(A period of increased availability, coupled with 
increased number of days in heatwave and/or 
drought leads to increased risk of megafires, 

followed by a shift in vegetation which results in a 
reduction in biomass, decreasing fire 

susceptibility) 

High 

East (but 
west/inland of 
the Great 
Dividing Range) 

↑↑ 

(Increased biomass, increased number of days in 
heatwave. Mixed signals about changes to 

drought) 

Moderate 

Northern 
Australia 

-* 
interannual and interdecadal variation still plays a 

dominant role (knowledge gap in future 
monsoonal behaviour) 

Low 
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5.2. Wild extremes 

5.2.1. Extratropical cyclones 

Contributors 

Acacia Pepler (Lead), Danielle Udy, James Risbey, Carly Tozer, Tess Parker 

Indices 

Low-pressure systems are regions where atmospheric pressure is lower than the 
surrounds, usually occurring with one or more closed contours of pressure. They are 
generally detected using automated methods, applied to gridded mean sea-level 
pressure or geopotential height data. For the purposes of this report the University of 
Melbourne1 tracking method (Murray and Simmonds 1991; Simmonds et al. 1999) was 
used, which has been widely applied in Australia. The results are qualitatively similar to 
other approaches in the scientific literature, but the magnitude of the projected changes 
may differ. 

In contrast to tropical cyclones, there is no well-established set of criteria for identifying 
low-pressure systems with significant impacts. Some criteria, and the measures used for 
this report, are shown in Table 12. 

Table 12: Criteria used for identifying lows. 

Criteria Used for this report Explanation 

Intensity Laplacian >= 0.6 
hPa/deg.lat2, averaged 
within a 2° radius 

The intensity of the low can be defined based 
on the central pressure, the pressure 
gradients, or measures of vorticity (such as 
the Laplacian of pressure). Stricter criteria 
identify lows with stronger circulation and 
more intense winds but are less tightly linked 
to rainfall. 

 
1 https://cyclonetracker.earthsci.unimelb.edu.au/ 
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This is a weak criterion compared to many 
other studies, so may identify larger numbers 
of lows including less impactful systems.  

Duration >=6 hours (2 time 
steps) 

Longer-lasting lows that travel a longer 
distance can produce larger impacts, and 
durations >=48 hours are common for 
Northern Hemisphere studies and regions in 
the extratropical storm track. Gridded data 
may spontaneously generate lows at 
individual time steps due to spatial variability, 
particularly at high resolutions.  

In Australia, short-lived lows have been 
known to develop close to the coast and 
cause notable impacts, so a short duration 
threshold is chosen. 

Vertical 
extent 

Corresponding low 
detected at 500 hPa 
within 500 km at least 
once 

Many studies identify lows at a single 
atmospheric level, such as the surface or 
500 hPa (cut off lows). However, deep lows 
which extend vertically into the troposphere, 
such as those associated with a cut-off low, 
produce heavier rainfall, while lows identified 
only at the surface over land areas are often 
heat lows with little impact. 

This dataset focusses on lows that extend 
from the surface to 500 hPa (~5 km).  

Thermal 
structure 

Not used Lows can be categorised as having a warm 
core (e.g. tropical cyclones), a cold core (e.g. 
extratropical cyclones), or a hybrid core (e.g. 
many east coast lows). These have different 
characteristics and may have different future 
changes.  

No such criteria is applied here, so the 
dataset includes tropical lows and 
depressions in addition to extratropical lows.  

Radius of 
influence 

 A low-pressure system is considered to 
influence the region within a 5 degree radius 
of the low centre, which is approximately the 
average extent of the outer closed contour. 
However, the extent of the rain associated 
with lows is often significantly larger than this, 
at closer to 10 degrees.  
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Data sources 

Data for extratropical lows is provided using the 13-member ACS regional climate model 
(RCM) ensemble using SSP3-7.0. Tracking is performed on the raw MSLP and 500 hPa 
geopotential height data, after regridding to a common polar stereographic grid with an 
equivalent resolution of ~1.5° at 30°S. This regridding is important to reduce the 
detection of anomalous small-scale lows, which can lead to large uncertainties in high-
resolution datasets (Di Luca et al. 2015).  

Limitations 

Biases 

Global climate models underestimate the frequency of low-pressure systems in the 
Australian region, particularly at upper levels. While this is partially improved by regional 
downscaling (Pepler and Dowdy 2022), the datasets continue to underestimate the 
frequency of lows in the cool season, particularly in southern Australia where the median 
frequency in the ACS ensemble is 29% lower than in BARRA-R2. At the same time the 
ACS RCMs overestimate the frequency of warm-season lows in northern Australia. For 
these reasons, we do not report changes for Australia as a whole, to avoid trends being 
biased by changes in tropical lows. Instead, we focus on southern Australia (south of 
28°S), where extratropical lows are an important source of cool-season rainfall and the 
projected trends are more consistent.  

Other limitations 

• Interannual variability in the frequency of low-pressure systems is large and may 
override anthropogenic changes for some periods, particularly for smaller regions 
and at lower Global Warming Levels  

• Events with larger impacts occur less frequently, are likely to be less well-
simulated and may have different changes to those shown here. Notably, 
changes to rainfall intensity and sea levels may increase the impacts from severe 
systems.  

• Regional means are calculated for each ensemble member from the gridded 
percentage change. This can give slightly different relative changes to those 
obtained if the regional mean was calculated for each GWL first. 

• GWL1.2 represents the "current climate" of ~2011-2030 – this already represents 
a decrease in cool season frequency relative to a pre-industrial climate.  

• Ensemble medians are provided as "one member – one vote", and some GCMs 
are therefore included more times than others depending on the number of ways 
each has been regionally downscaled. 

• There is likely to be an increase in shallow (heat) lows over southern Australia 
during the warm season, which is not captured in this analysis, due to the 
requirement for lows to be deep.  

• The impacts of more distant extratropical storms whose centres are not on the 
continent are not included here.  These lows can create severe impacts by 
extending strong winds across broad reaches of the continent.  The impacts of 
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these remote lows can also be felt through extended frontal systems and features 
embedded in the fronts. These impacts are not considered here. 

Outputs 

• Annual mean frequency of lows (low_freq), shown as the percentage of time with 
a low centre within a 5-degree radius (Table 13). 

• Percent change in frequency relative to GWL1.2 (Figure 21). 

Proposed future indices 

• Additional detail on impactful lows, e.g. based on strength or movement. 
• Data for changes in fronts. 

Current maturity 

• Current maturity for frequency of lows: Medium.  

Use for risk assessments: 

• Nationally consistent analysis for Climate Hazard Overview (CHO): frequency of 
lows (low_freq), restricted to regions south of 28°S 

Key findings 

Based on multiple lines of evidence, there is medium confidence that the frequency 
of lows will decrease in a warmer climate. This confidence level is given because the 
number of Australian studies is relatively small and models may not fully represent 
the underlying processes, leading to uncertainty. However, there is strong model 
agreement on the sign of the change in frequency of lows (Pepler et al. 2025, 
Priestley & Catto 2022), which is supported by data on historical trends (Pepler 
2024). All regional models project a decrease in the frequency of extratropical lows 
in southern Australia between GWL1.2 and GWL3, with an ACS ensemble median 
change of -10% and potentially larger decreases from other RCMs. 

There is low confidence for changes in the frequency of the most intense lows. 
Impacts of extratropical lows may increase despite declines in frequency, linked to 
both increases in rainfall intensity and rising mean sea levels (medium confidence) 
(Pepler & Dowdy, 2022) 
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Table 13: Proportion of hours influenced by a low in southern Australia (south of 28 S) for GWL 1.2 and 
changes for GWL 1.5, GWL 2.0 and GWL 3.0 relative to GWL 1.2. 

 Current Future Change relative to current 

Metric GWL 1.2 GWL 1.5 GWL 2.0 GWL 3.0 
Proportion of hours 
influenced by a low in 
southern Australia 
(South of 28°S)  

1.0% 
[0.8% to 1.2%] 

No detectable 
change 
Low confidence 

-10% 
[-19% to +8%] 
Medium 
confidence 

-10% 
[-25% to -3%] 
Medium 
confidence 

 

 
Figure 21: The median (50th percentile) percentage change in extratropical low frequency for each future 
warming scenario (GWL1.5, 2 and 3) compared to the current climate (GWL1.2). Declining trends are visible 
across much of Australia, particularly in the southeast and at higher global warming levels 

References 

Di Luca A, Evans JP, Pepler A, Alexander L, Argüeso D (2015) Resolution sensitivity of 
cyclone climatology over Eastern Australia using six reanalysis products. J. Clim., 
28:9530–9549, https://doi.org/10.1175/JCLI-D-14-00645.1. 

Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from 
digital data. Part I: Development and operation of the scheme. Aust. Meteorol. 
Mag., 39:155–166. 

Pepler AS, Dowdy AJ (2022) Australia’s future extratropical cyclones. J. Clim., 
35:7795–7810, https://doi.org/10.1175/JCLI-D-22-0312.1. 

Pepler A (2024) Recent trends in extratropical lows and their rainfall over Australia. J. 
South. Hemisph. Earth Syst. Sci., 74:1–18, https://doi.org/10.1071/ES24002. 

Pepler AS, Di Virgilio G, Dowdy A, Goyal R, Su CH, Thatcher M, Syktus J (2025) 
Projections of Australian low pressure systems in downscaled CMIP6 models. 
Submitted to JSHESS 

Priestley MDK, Catto JL (2022) Future changes in the extratropical storm tracks and 
cyclone intensity, wind speed, and structure. Weather Clim. Dyn., 3:337–360, 
https://doi.org/10.5194/wcd-3-337-2022. 

Simmonds I, Murray RJ, Leighton RM (1999): A refinement of cyclone tracking 
methods with data from FROST. Aust. Meteorol. Mag., Special Ed, 35–49. 

https://doi.org/10.1175/JCLI-D-14-00645.1
https://doi.org/10.1071/ES24002


CLIMATE HAZARD INFORMATION DEVELOPED FOR USE IN CLIMATE RISK ASSESSMENT 

   

 

75 

 

5.2.2. Tropical cyclones 

Contributors 

Hamish Ramsay (Lead), Tony Rafter, Stacey Osbrough, Cameron Do 

Hazard definition and impacts 

Tropical cyclones are intense, low-pressure systems that form over warm tropical oceans 
and generate gale-force or stronger winds, heavy rainfall and coastal storm surges.  The 
severity of a tropical cyclone is ranked in categories from 1 (with sustained winds above 
63 km/h) to 5 (sustained winds above 200 km/h). 

Tropical cyclone impacts include loss of life, threats to human health, destruction of 
property and critical infrastructure such as energy and communication networks, roads 
and seaports, and substantial damage to the natural environment including polluting 
waterways and soils, eroding coastlines and threatening ecosystems.  

Compound tropical cyclone hazards, such as combined wind and heavy rainfall, can 
exacerbate impacts. While the most extreme winds tend to be confined to coastal zones, 
creating very large waves and storm surges, prolonged heavy rain and flooding can 
impact communities well inland from where landfall occurs. Antecedent wet soils on land 
can further compound impacts, resulting in major flooding. Cascading impacts include 
heatwaves and high humidity after an event, which can increase mortality in the event of 
power loss. If tropical cyclones move southwards in Australia, they will increasingly 
impact areas where the natural environment and human infrastructure has limited 
capacity to withstand tropical cyclone conditions. 

Key findings 

Tropical cyclones are among the costliest natural hazards affecting Australia over 
the past 60 years and are estimated to be the costliest natural hazard globally 
(Munich Re, 2025). Coastal and offshore regions of northern Australia are most at 
risk, but central west Western Australia and southeast Queensland are also at 
moderate risk. 
 
Overall tropical cyclone frequency has been observed to have decreased in the 
Australian region by approximately 10% over the past 40 years. A further decrease 
in frequency is generally projected (medium confidence) although there remains 
uncertainty around the magnitude (and in some places, the sign) of changes (Table 
14). There has been a detected increase in the fraction of high-intensity TCs 
observed since 1979, both globally and for ocean basins around Australia. 
 
Projections from published studies indicate that globally a greater proportion of 
tropical cyclones will be of high intensity, with greater rainfall associated with them, 
and higher storm surges due to rising sea levels (high confidence). There is currently 
uncertainty as to the extent to which the global projections for intensity and rainfall 
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apply to the Australian region, this being an important gap with work currently 
underway in ACS, NESP and Australian universities.  
 
There is low confidence in projections of other aspects of TCs, such as poleward 
movement and changes in absolute number of very intense TCs (as opposed to 
proportion). Year-to-year variation in number and intensity of tropical cyclones 
affecting Australia is large and is projected to remain so. There is large uncertainty in 
projection of TC behaviour because of the relatively poor representation of tropical 
cyclones in global climate models due to coarse model resolution, and the variation 
in number of cyclones simulated in different climate models. 
 

 
Table 14: The change in tropical cyclone parameters for each future warming scenario (GWL1.5, 2 and 3) 
compared to the current climate (GWL1.2) is shown in bold, along with an indication of confidence. The 
10th to 90th percentile range is shown in square brackets. 

 Current Future change relative to current 

Metric +1.2 °C +1.5 °C +2 °C +3 °C 
Tropical cyclone 
frequency  
(all categories) 
 

10 per year 
average 

little change or 
small decrease 

medium confidence 

decrease 
medium confidence 

decrease 
medium 

confidence 

Tropical cyclone 
frequency  
(category 4-5) 

2-3 per year 
average 

little change or 
small increase 
low – medium 

confidence 

little change or 
increase 

low – medium 
confidence 

little change or 
increase 

low – medium 
confidence 

 

Past and future hazard changes 

Australia currently experiences around 10 tropical cyclones in the Australian region each 
year, with about four of these crossing the coast. There is large interannual variation in 
the frequency of TCs, primarily driven by El Niño and La Niña.   

For Australia, the frequency of observed tropical cyclones has decreased by around 10% 
since 1982 (based on IBTrACS from Knapp et al 2010). The trend in TC intensity in the 
Australian region is harder to quantify compared to frequency, because of uncertainties 
in estimating the intensity of individual TCs and the relatively small number of intense 
TCs. This problem is compounded by changing data availability. 

The frequency of TCs in the Australian region is projected to further decrease in the 
future (medium confidence). Figure 22 shows projected decrease in the average annual 
number of TCs by late 21st century (approximately GWL3) over the southwestern Pacific 
and southern Indian Ocean (Rafter et al 2019). There remains uncertainty around the 
magnitude (and in some places, the sign) of changes in frequency. The year-to-year 
variation in the number and intensity of TCs is projected to remain large. 

Projections from published studies indicate that globally a greater proportion of TCs will 
be of high intensity, with greater rainfall associated with them, and higher storm surges 
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due to rising sea levels (high confidence) (Knutson et al 2020). There is currently 
uncertainty as to the extent to which the global projections for intensity and rainfall apply 
to the Australian region, this being an important gap with work currently underway in 
ACS, NESP and Australian universities.  

There is low confidence in projections of other aspects of TCs, such as poleward 
movement, speed of translation, and changes in the absolute number of very intense 
TCs (as opposed to proportion). The low confidence in the understanding of potential 
poleward expansion of the TC risk zones represents another significant gap for Australia, 
because building codes are at lower standard for moderate risk areas (e.g., southeastern 
Queensland). Hence buildings are more vulnerable in those regions so under greater 
risk of impact if the southward range of TCs increases significantly. 
 

TC track density 1970-2000

 

 

Figure 22: Spatial frequency of tropical cyclones (TCs) simulated by 9 climate models for the period 1970-
2000 (upper panel) and the projected change to 2070-2100 for a high emissions scenario (approx. GWL3.0) 
(lower panel). Based on data from Rafter et al (2019). 
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Gaps in the current knowledge and next steps  

The relatively low confidence in projection of key aspects of tropical behaviour regionally 
is a result of several factors, including: 

• The most intense winds of tropical cyclones are confined to a relatively small 
region surrounding the centre, which is typically much smaller in size than climate 
model resolution, meaning estimations of tropical cyclone occurrence and 
strength are made from large scale conditions. Substantial variations in the 
number of cyclones simulated in different climate models and using different 
estimation techniques, and typically peak wind speeds are underestimated 

• Uncertainty caused by the dependence of tropical cyclone frequency on sea 
surface temperature patterns (i.e., projected changes in El Niño-Southern 
Oscillation and the state of the Pacific Ocean by climate models which currently 
have significant uncertainties). 

• Discrepancies in the projected trends of large-scale tropical cyclone formation 
indices (which mostly increase with warming) and the explicit number of detected 
tropical cyclones in climate models (which mostly decrease with warming). 

Impact studies need projections of recurrence rates for a range of intensities, rainfall 
totals and storm surge for particular regions. Such quantitative projections require 
thousands of tropical cyclone cases to define recurrence rates of the rare extreme events 
of highest impact, which cannot be done by direct climate model simulation due to the 
computational expense. 
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5.2.3. Convective storms including hail 

Contributors 

Marcus Thatcher (Lead), Richard Matear, Danielle Udy 

Convective hazards like thunderstorms are not directly simulated in our climate and 
weather models. Instead, we use large scale indicators including Convective Available 
Potential Energy (CAPE) and Convective Inhibition (CIN) as measures of the 
environmental conditions that encourage or inhibit the formation of thunderstorms. CAPE 
measures the integral of the upward buoyancy on an air parcel rising through the 
atmosphere. A larger value of CAPE suggests that thunderstorms are more likely to form. 
CIN is a measure of the potential energy that would prevent an air parcel from rising. A 
more negative value of CIN would inhibit the formation of thunderstorms. In situations 
where both CAPE and CIN have a large magnitude, then we may expect more severe 
thunderstorms if thunderstorms develop. 

The climatology of CAPE and CIN is calculated from Bureau’s Atmospheric high-
resolution Regional Reanalysis for Australia version 2 (BARRA2) at 12 km resolution, 
developed by the Bureau of Meteorology (Su et al. 2022). Following the method of Chen 
et al. 2020, we have calculated the climatology of CAPE and CIN by averaging hourly 
values but ignoring values of zero CAPE or CIN. The climatology is calculated from 
1995–2014. Projections for convective storms using these and other convective indices 
were not produced for the NCRA, but will be produced for future assessments (see Next 
Steps). 

Key findings 

Changes in hail events remain intractable. While hail is expected to be affected by 
climate change there is high uncertainty on how changes will manifest and 
geographical differences in observed and modelled trends (Table 15). An overall 
reduction in hail frequency is likely but with an increase in large hail occurrence. 

 

 

Next steps 

To assess the changes in risks from Convective storms, we need to understand changes 
in frequency and intensity of these events. Conducive environments for convective 
storms can be characterised by high moisture, steep lapse rate and some lifting 
mechanism. This implies that changes in frequency and intensity might be affected in 
different ways for different storm types. An initial next step is establishing a 
comprehensive list of storm relevant indices (currently underway) to support a multiple 
lines of evidence approach to past change and future projections. 

Changes in impacts will come about through changes in damaging winds, rain, hail and 
flash flooding associated with these events. From a risk perspective, convective storms 
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could therefore be considered compound events which means this work should be linked 
into studies of synoptic drivers for other climate hazards, including heat, drought and fire. 

Existing thunderstorm observational datasets are largely insufficient due to their limited 
length (typically less than 30 years), low spatial density of observing networks (e.g. 
lightning and severe storm archive) and not all relevant variables are observed. The best 
source currently are radar data which does not exist nationally. Suitable datasets and 
opportunities to improve them (e.g. homogenise/extend) should be identified (e.g. 
extending existing lightning datasets).  

Changes in frequency and intensity of convective events may require different indices. 
Consideration needs to be given to how well indices link to relevant processes (especially 
processes we expect to change under climate change). The objective choice of indices 
needs to be guided by observations and model data (including reanalysis) as it is 
possible that model data do not fully resolve all relevant physical processes. 

Given that many aspects of changes in convective storms are currently intractable, a 
meta study of existing literature could result in practical guidelines and recommendations 
based on the current state of science. 

Table 15: The change in median annual frequency of large hailstorms (hail> 2.5 cm) for each future warming 
scenario (GWL1.5, 2 and 3) compared to the current climate (GWL1.2) is shown in bold, along with an 
indication of confidence. 

  Current Future change relative to current 
 +1.2 °C +1.5 °C +2.0 °C +3.0 °C 
Annual 
frequency of 
large hailstorms 
(hail> 2.5 cm)  

~ 5-10 events in 
eastern regions and ~ 

0-5 hail events 
elsewhere 

insufficient data little change, but 
potential increase in 

east and spread further 
south 

low confidence 

insufficient 
data 
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5.3. Wet extremes 

5.3.1. Extreme rainfall 

Contributors 

Acacia Pepler (Lead), Danielle Udy 

Indices 

The extratropical storm team currently provides projections for three indices of extreme 
rain: 

• Highest annual 24-hour total (RX1D) - this is the highest daily rainfall falling at 
each grid point in a year, 

• Highest annual 5-day total (RX5D) - this is the highest five-day rainfall total falling 
at each grid point in a year, and 

• Highest annual hourly total (RX1H) - this is the highest rainfall falling over one 
hour at each grid point in a year. 

RX1D and RX5D are very widely used indices, which were defined as part of the key 
indices by the World Climate Research Program's Expert Team on Climate Change 
Detection and Indices2. They are commonly used when assessing future intensification 
of extreme rainfall, for example as part of the IPCC reports and the Interactive Atlas3. 
They are also the key datasets needed to generate and understand extreme value 
distributions for calculating the intensity of rarer events such as rainfall with a 10% 
Average Exceedance Probability (AEP). They can be calculated from any dataset using 
standard tools such as cdo, as documented in the hazard team github4.  
While the ETCCDI indices were designed for application to daily data, RX1H can be 
calculated by applying the same methods to hourly rainfall. Very heavy short-duration 
rainfall is important for understanding future changes in flash flooding, particularly in 
urban areas. Hourly rainfall is linked to convection and thunderstorm activity, which can 
be poorly simulated even at the spatial scales of regional climate models, but 
observational evidence indicates that hourly rainfall is intensifying at a higher rate than 
for daily rainfall extremes (Wasko et al. 2024).  

Data sources 

Data for these extreme rainfall indices is provided using the 13 member ACS regional 
climate model (RCM) ensemble using SSP3-7.0, which has been downscaled and bias 
adjusted to the 5 km AGCD grid using the Quantile Matching for Extremes approach. 
This corrects for a tendency of the raw RCM data to overestimate heavy rain but has 
created data gaps in inland regions where observations are sparse and which need to 

 
2 https://www.wcrp-climate.org/etccdi 
3 https://interactive-atlas.ipcc.ch 
4 https://github.com/AusClimateService/NCRA_ExtratropicalHazardTeam 
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be masked before calculating regional means. The projected change in the raw and bias 
adjusted datasets are very similar. 

Hourly rainfall is not bias adjusted due to a lack of sub-daily observational data. However, 
a partially bias adjusted dataset was created by multiplying the bias adjusted daily rainfall 
with the proportion of rainfall that fell during the wettest hour of the day in the raw RCM 
output. This method assumes that RCMs can replicate the temporal distribution of rainfall 
but may underestimate the intensity of very high hourly rainfall given the poor simulation 
of thunderstorms. 

Confidence is assessed based on both model agreement and other lines of evidence, 
including other regionally downscaled models and the scientific literature, particularly the 
recent review paper of Wasko et al. (2024) in support of the updated Australian Rainfall 
and Runoff Guidelines.  

Limitations 

• These indices represent how extreme rainfall is at a given location, but do not 
directly translate into flood risk, which is influenced by a range of factors 
including: 
- whether the soils are wet or dry and river levels are high or low: wetter soils 

increase flood risk; 
- whether rainfall is widespread or localised: this influences how much of a 

catchment received rainfall, and the total water volume in a river; and 
- the period over which the rain fell: a daily total of 25 mm could fall in a single 

hour or be spread over 24 hours, with very different flash flood potential. 
• Interannual variability in extreme rainfall is large and may override anthropogenic 

changes for some periods, particularly for smaller regions and at lower Global 
Warming Levels (medium confidence). 

• Many of the key weather systems that generate heavy rainfall are poorly 
simulated by models, particularly thunderstorms, but biases also exist for both 
tropical and extratropical lows. This means there may be key processes missing 
that would affect projected changes. This is particularly important for RX1H. 

• Rare events, such as those that occur once per decade or less frequently, have 
larger impacts and are expected to have stronger increases in intensity, but data 
for these are not currently presented. 

Considerations for appropriate use of downscaled climate projections 

• Regional means are calculated for each ensemble member from the gridded 
percentage change. This can give slightly different relative changes to those 
obtained if the regional mean was calculated for each GWL first. 

• GWL1.2 represents the "current climate" of ~2011-2030 – already a significant 
increase in both temperature and rainfall hazards relative to both a pre-industrial 
climate, or the ~1961-1990 period used for defining current flood risk.  
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• Ensemble medians are provided as "one member – one vote", so some GCMs 
are included more times than others depending on the number of ways each has 
been regionally downscaled. 

Outputs 

• Annual mean RX1D, RX5D and RX1H for each GWL. 
• Percent change in each index relative to GWL1.2. 

Proposed future indices 

• Days above specified thresholds, if thresholds are identified by users through co-
design 

• Rarer events using Generalised Extreme Value analysis, e.g. rainfall extremes 
with an Annual Exceedance Probability of 10%, 5% or 1%  

Current maturity 

• Current maturity: Medium for daily indices, low for RX1H due to lower confidence 
in regional model capacity to simulate sub-daily processes e.g. thunderstorms.  

Use for risk assessments: 

• Nationally consistent analysis for CHO: RX1D, RX5D, RX1H 

Key findings  

For the highest annual 24-hour rainfall total (RX1D) and the highest annual 5-day 
total (RX5D), data is extracted from the 13-member bias-adjusted ACS model 
ensemble (Table 16). There is an Australian mean change in RX1D of +12% 
between GWL1.2 and GWL3, close to the thermodynamic expectation of a ~7% 
increase per degree of global warming, with 85% of models agreeing on the sign of 
the trend. Both model agreement (75%) and the magnitude of the projected change 
(+9%) are smaller for RX5D, consistent with previous studies (e.g. Wasko et al. 
2024).  

There is medium confidence in an increasing trend in both RX1D and RX5D, based 
on both process-understanding of thermodynamic changes, moderate model 
agreement on the sign of the change, and consistency of the change with observed 
changes and other lines of evidence. However, there is lower confidence in the 
magnitude of the change, due to large interannual variability, uncertainty around 
future changes in key drivers such as ENSO, and uncertainty around key processes 
such as weather system movement and blocking, as well as smaller projected 
changes in other CORDEX-CMIP6 simulations for Australia.  

Projected changes are heterogenous around Australia, and these spatial patterns 
vary between models (Figure 23). This gives low confidence in estimating regionally 
varying projected changes for rainfall intensity, consistent with Wasko et al. (2024). 
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For the highest annual hourly total (RX1H), there is very high model agreement on 
an increase between GWL1.2 and GWL3 (92% agreement), with an ensemble 
median increase of 13%. This is lower than the best estimate of change from 
multiple lines of evidence of +15% per degree of global warming (Wasko et al. 2024) 
and likely indicates deficiencies in RCM simulation of the processes influencing 
extreme sub-daily rainfall. 

 
Table 16: Extreme rainfall metrics for GWL 1.2 and changes for GWL 1.5, GWL 2.0 and GWL 3.0 relative 
to GWL 1.2. 

 Current Future 
Metric GWL 1.2 GWL 1.5 GWL 2.0 GWL 3.0 
Highest 1-
hour total 
(RX1H) 

18 mm 
[17, 19] 

no detectable 
change 

low confidence 

+12%  
[+6, +22] 

high confidence 

+29%  
[+13, +50] 

high confidence 
Highest 24-
hour total 
(RX1D) 

59 mm 
[55, 62] 

no detectable 
change 
very low 

confidence 

+6% 
[-4, +14] 
medium 

confidence 

+12% 
[-2, +27] 

high confidence 

Highest 5-
day total 
(RX5D) 

100 mm 
[95, 107] 

no detectable 
change 
very low 

confidence 

+5% 
[-7, +12] 

low confidence 

+9%  
[-6, +27] 
medium 

confidence 
 

 

Figure 23: Multi-model median percentage change between GWL1.2 and GWL3 using the ACS QME 
ensemble for a) RX1H, b) RX1D and c) RX5D. 

References 
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5.3.2. Average rainfall 

Contributors 

Acacia Pepler (Lead), Danielle Udy 

Daily bias-corrected (QME) rainfall was converted into monthly totals, which were used 
to derive annual and seasonal means. On an annual basis, no NCRA region had a robust 
change signal across the ACS ensemble, although consistent changes were identified 
in some small sub-regions including in the southwest of western Australia. Consequently, 
total rainfall analysis was separated into two seasons: 

- April-October, representing the southern wet season 
- November-March, representing the northern wet season 

During April-October (Figure 24), the overall pattern favours a decrease in Australian 
rainfall at all GWLs, but with relatively little model agreement. At GWL3, the median 
change in Australian mean rainfall is -2%, but with a 10th-90th percentile range between 
-27% and +18%. There is stronger model agreement on a decline in April-October rainfall 
in southwestern Western Australia, with a median decline of -10% at GWL3 [-17% to -
7%]. There are also areas of model agreement on declines on the order of -5% in parts 
of southeastern Australia (Figure 24). However, these changes do not map neatly onto 
NCRA regions, and no NCRA region has more than 80% agreement on the sign of the 
change between GWL1.2 and GWL3.  

 
Figure 24: Ensemble median change in total April-October precipitation at each GWL, as a percentage 
change relative to GWL1.2. Hashes indicate where less than 80% of ensemble members agree on the sign 
of the change. 

During November-March the median change in Australia at GWL3 is an increase of +1%, 
with a large range (-11% to +16%). While there are some small areas of model 
agreement on increasing trends in inland eastern Australia (Figure 25), resulting in a 
median projected change of +7% for NSW [-4%,+24%] no NCRA region has at least 80% 
agreement on the sign of the change. The range of potential change is very large in 
some regions, including a range from -20% to +25% in SA imply very low confidence in 
future changes.  
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Figure 25: Ensemble median change in total November-March precipitation at each GWL, as a percentage 
change relative to GWL1.2. Hashes indicate where less than 80% of ensemble members agree on the sign 
of the change. 

Projected rainfall changes in the 13-member ACS ensemble (numbered 1 to 13 in Table 
2) are broadly within the broader CMIP6 ensemble range (CSIRO 2025), although there 
are regional and seasonal variations. 

References 

CSIRO (2025) Australian Climate Service CMIP6-Next Generation downscaled climate 
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5.3.3. Riverine and flash flooding 

Contributors 

Katayoon Bahramian (Lead), Wendy Sharples, Ulrike Bende-Michl 

Overview 

In support of the Hazard Insurance Partnership (HIP), the Australian Climate Service 
(ACS) has developed new flood indicators to enable greater understanding of Australia's 
future flood risk. The flood indicators, made available in a series of spatial and regional 
maps, consider the main factors causing floods including rainfall, and runoff intensity as 
flood drivers and landscape antecedent conditions as flood preconditioners. 

https://doi.org/10.25919/9bde-a338
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Key findings 

The findings show an increase in future flood risk nationally, particularly along the 
east coast and the northern tropics. Key regions, such as the Northern Rivers region 
and parts of the Murray-Darling basin, could expect to see more intense rainfall and 
river flow under future global warming. Whereas areas in the northwest, including 
regions around Fitzroy Crossing, are projected to see more intense flood 
preconditioning under future global warming levels. 

Our results can be used to undertake a preliminary assessment of future flood risk, 
where flood indicators are chosen based on the best available science and an 
extensive literature review.   

While confidence ratings vary (see more in 'confidence' section) the direction of 
these changes are consistent with trends outlined in the State of the Climate (2020-
24).  

 

Data Sources 

This information has been developed using rainfall data from the ACS QME ensemble 
developed for the ACS based on the BARPA modelling approach using CMIP6 GCM 
data (Su et al. 2022) to calculate the rainfall indicators for selected global warming levels. 
The ACS National Projections comprise an ensemble of 8 GCM models at 0.2° × 0.2° 
spatial resolution for the period 1960-2100 and 3 socio-economic pathways (SSP 585 
was used in this study). 

Soil saturation and runoff data from National Hydrological Projections (NHP, Wilson et 
al., 2022) are used to calculate the flood indicators for selected global warming levels. 
The NHP comprise an ensemble of 32 CMIP5 bias-corrected climate model data and 
derived hydrological projections (including runoff projections) at daily temporal and 0.05° 
× 0.05° spatial resolution for the period 1976–2100 and two emission scenarios (RCP 
4.5 and RCP 8.5, where RCP 8.5 is equivalent to SSP 585). Rainfall and runoff are 
measured in millimetres per day, and soil saturation is measured in fraction fullness, 
where 1.0 is completely saturated. 

The information has been developed at a national scale to provide a national picture of 
riverine and flash flooding for medium to long-term planning. 

Definitions of Riverine Flooding Indicators 

Riverine flood maxima can be summarised by both rainfall and runoff indicators, where 
heavy rainfall can generate excess runoff whereby rivers exceed their capacity and 
runoff into surrounding low-lying regions. The Max1-Day Rainfall variable values indicate 
the meteorological drivers for a flooding hazard, and the Max1-Day Runoff variable and 
90th percentile values indicate the severity of the flood.  

Riverine flooding is dependent on antecedent conditions, with saturated soils acting to 
increase runoff for a given amount of rain. Thus, it is important to consider projected 
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changes in extreme soil saturation, or something called Max-monthly soil saturation 
when considering changes in flood maxima.   

Max1-Day Rainfall: The maximum 1-day rainfall indicator was derived by analysing 21-
year periods centered on the above selected GWLs across the ACS QME ensemble for 
SSP585 (RCP 8.5). For each period, the annual maximum daily rainfall was extracted 
for each year within the period. The median value of the daily maximum runoff was 
calculated for each GWL. This indicator represents the intensity of rainfall. For 
consistency in notation, we are referring in this section to Max1-Day rainfall and Max1-
Day Runoff. Note that section 5.3.1 (extreme rainfall) uses the notation RX1D to indicate 
the highest annual 24-hour rainfall total. 

Max1-Day Runoff: The maximum 1-day runoff indicator was derived by analysing 21-
year periods centered on the above selected GWLs across the NHP ensemble for RCP 
8.5. For each period, the annual maximum daily runoff was extracted for each year within 
the period. The median value of the daily maximum runoff was calculated for each GWL. 
This indicator represents the intensity of flow. 

Annual Total 90th Percentile Runoff: The 90th percentile of annual runoff was computed 
for selected GWLs using each NHP ensemble for RCP 8.5. For each GWL, the percentile 
runoff data from a 20-year period was used to calculate where the 90th percentiles were 
chosen to represent the distribution of projected runoff under future climate scenarios. 
This indicator represents the high flow volume. 

Max-monthly soil saturation: The maximum monthly mean soil saturation indicator 
was derived by analysing 20-year periods centered on the above selected GWLs across 
the NHP ensemble for RCP 8.5. For each period, the annual maximum monthly rootzone 
soil saturation was extracted for each year within the period. The median value of the 
monthly maximum rootzone soil saturation was calculated for each GWL. This indicator 
represents potential flood impact where very saturated soil could lead to severe flooding, 
and dry soil could lead to moderate flooding. 

National Picture 

Current trends 

A current wetting trend was found across most regions, where the rainfall and flow 
intensity has increased, along with the increase in flood impact potential. This trend is 
particularly noticeable along the coastline in the eastern and northern parts of Australia, 
consistent with the recent State of the Climate reports, which may have exacerbated 
flooding across the country in the short term. 

Future trends 

Rainfall intensity will increase across most parts of Australia in the far future (GWL 3.0) 
warming) and there is a slight wetting trend from current conditions across most regions 
in the near future (GWL 1.5 and 2.0) for flood impact potential, which could exacerbate 
flooding. There is a consistent decrease in flow intensity the southern parts of the country 
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which could mean that the flood risk in those areas is reduced. High volume flows in 
general are projected to decrease, with implications for recharging groundwater stores. 

Description 

Flood indicators are defined as either flood drivers such as rainfall and flow intensity, and 
flood preconditioners such as soil saturation. 

The changes in flood indicators across identified global warming levels are detailed both 
spatially in the form of maps of ensemble medians and in the form of a spatial average. 
The raw data is available for use on the National Computational Infrastructure (NCI). 

Summary of future flooding indicator changes – National 

Future changes in four flood indicators are summarized in Table 17 and Figure 26, Figure 
27, Figure 28 and Figure 29. 

Table 17: National picture of changes in flooding indicators at each global warming level; spatially averaged 
with median and 10th – 90th percentile ranges. 

Nationally Current Future 

Indicator GWL 1.2 GWL 1.5 GWL 2.0 GWL 3.0 
Rainfall intensity 
RX1D (ACS 
CMIP6) 

59 mm 
[55, 62] 

no detectable change 
very low confidence 

+6% 
[-4, +14] 

medium confidence 

+12% 
[-2, +27] 

high confidence 
Flow intensity 
Max1-Day Runoff 
(NHP CMIP5)   

2.6 mm [1.6 – 4.3 mm]  -3.8 %  
[-39 to 47%] 

Low confidence 

-10 %  
[-53 to 58%] 

Low confidence 

- 12 %  
[-57 to 59%] 

Low confidence 
High flow volume 
Annual Total 90th 
Percentile Runoff 
(NHP CMIP 5) 
 

108 mm [74 – 166 mm]  - 0.13 %  
[-0.3 to 0.07%]  
Low confidence 

- 0.22 %  
[-0.4 to 0.1%]  

Low confidence 

-0.22 %  
[-0.4 to 0.1%]  

Low confidence 

Flood impact 
preconditioner 

Max monthly soil 
saturation (NHP 
CMIP5) 

57% [49 – 66 %] -1.2% 
[-15 to 12%] 

Low confidence 

-1.5% 
[-19 to 22%] 

Low confidence 

-1.3% 
[-19 to 24%] 

Low confidence 

 

 
Figure 26: The median percentage change in highest annual one day rainfall total from the ACS CMIP6 
ensemble data for each future warming scenario (GWL1.5, 2 and 3) compared to the current climate 
(GWL1.2). 
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Figure 27: The median percentage change in Max1-day runoff from the NHP data for each future warming 
scenario (GWL1.5, 2 and 3) compared to the current climate (GWL1.2). 

 
Figure 28: The median percentage change in annual total 90th percentile runoff from the NHP data for each 
future warming scenario (GWL1.5, 2 and 3) compared to the current climate (GWL1.2). 

 
Figure 29: The median percentage change in Max monthly soil saturation from the NHP data for each future 
warming scenario (GWL1.5, 2 and 3) compared to the current climate (GWL1.2). 

Regional Picture 

Future trends 

Key insights include a projected increase in rainfall and flow intensity in Queensland as 
well as in New South Wales, with implications for riverine flooding in these parts of 
Australia. In the northwest, regions around Fitzroy Crossing in Western Australia, are 
projected to see more intense flood preconditioning under future global warming levels, 
with implications for socio-economic impacts for isolated communities and transport 
routes. 
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The Northern Rivers and Murray-Darling Basin were included in the assessment due to 
their importance socio-economically. Both basins are projected to have increases in 
rainfall and flow intensity across GWL 2.0 and 3.0 as well, which implies that there will 
be potential issues for water management as well as flood risk in those basins. 

Description 

Changes in regional flood indicators across identified global warming levels are detailed 
is summarized in Table 18 and Table 19. 

The Northern Rivers (NR) basin is crucial for flood risk assessment due to its history of 
severe floods impacting cities like Grafton and Lismore. Its unique topography and 
meteorology lead to rapid, large-magnitude floods in wide floodplains, posing significant 
risks to communities. Understanding these factors is key for effective flood management. 

The Murray-Darling Basin (MD) is a complex and interconnected river system with 
diverse climate, landscape, and hydrological characteristics. But more importantly, it 
represents much of Australia’s food bowl. The MD exhibits very high spatial and temporal 
streamflow variability with floods and droughts being common features (Zhang, et. al., 
2024). 
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Summary of future flooding indicator changes – Regional 

Table 18: Summary of maximum 1-day rainfall statistics for the ACS QME ensemble across NCRA regions. 

Rainfall intensity – Max 1-day 

Region Median 
GWL1.2 

Median 
GWL1.5 – 
GWL1.2 

Median 
GWL2.0 – 
GWL1.2 

Median 
GWL3.0 – 
GWL1.2 

Confidence/li
kelihood at 
GWL2.0 – 
direction of 
change 

90th 
percentile at 
GWL2 

What lines of 
evidence 
were used to 
produce this 
statement? 

National 58.8 mm Unclear Unclear +12%  +14% ACS QME 
ensemble 

WA North 74.6 mm +2% +8% +11% Likely 
increase 

+13% ACS QME 
ensemble 

WA South 39.6 mm +3% +7% +11% Likely 
increase 

+11% ACS QME 
ensemble 

NSW/ACT 53.9 mm +2% +6% +15% Likely 
increase 

+11% ACS QME 
ensemble 

VIC 46.2 mm +2% Unclear +14%  +15% ACS QME 
ensemble 

SA 36.2 mm Unclear Unclear Unclear  +18% ACS QME 
ensemble 

TAS 55.5 mm +5% +6% +7% Likely 
increase 

+12% ACS QME 
ensemble 

NT 71.2 mm Unclear Unclear +11%  +21% ACS QME 
ensemble 

QLD North 88.4 mm Unclear +2% +13% Likely 
increase 

+17% ACS QME 
ensemble 

QLD South 59 mm Unclear +5% +12% Likely 
increase 

+13% ACS QME 
ensemble 

Notes Data from ACS QME ensemble 
Excludes regions 20-30S, 122-132E 
Values are reported for the multi-model median of the regional mean % change (method 3) 
"Unclear" indicates where less than 65% of models agree on the sign of the change 

 

Table 19: Summary of maximum 1-day runoff statistics for the NHP ensemble for RCP 8.5 across NCRA 
regions. 

Runoff intensity – Max 1 Day 

Region 

Median Max 
1-day runoff 
GWL2.0 – 
GWL1.2 

Median Max 
1 
GWL3.0 – 
GWL1.2 

Median 
GWL2.0 – 
GWL1.2 

Median 
GWL3.0 – 
GWL1.2 

Direction of Max 
1-day runoff 
change at GWL2.0 

Direction of max 
soil saturation 
change at GLW2.0 

What lines 
of evidence 
were used to 
produce this 
statement? 

National -3% -4% 2% 1% Decrease Increase NHP 
ensemble 

WA North 7% -12% 4% Unclear Increase Increase NHP 
ensemble 

WA 
South -15% -13% -3% -1% Decrease Decrease NHP 

ensemble 

NSW/ACT 11% 18% Unclear -1% Increase Unclear NHP 
ensemble 
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VIC -17% -14% -2% 4% Decrease Decrease NHP 
ensemble 

SA Unclear -6% Unclear 10% Unclear Unclear NHP 
ensemble 

TAS Unclear 3% Unclear 1% Unclear Unclear NHP 
ensemble 

NT -3% -1% -2% -1% Decrease Decrease NHP 
ensemble 

QLD 
North 2% 7% -1% Unclear Increase Decrease NHP 

ensemble 

QLD 
South -13% 5% -1% Unclear Decrease Decrease NHP 

ensemble 

Northern 
Rivers 
Basin 8% 4% Unclear -2% 

Increase Unclear NHP 
ensemble 

Murray 
Darling 
Basin 7% 11% -5% -2% 

Increase Decrease NHP 
ensemble 

Notes 
Data from NHP ensemble 
Values are reported for the multi-model median of the regional mean % change (method 3) 
"Unclear" indicates where less than 65% of models agree on the sign of the change 

 

Priority catchments 

A summary of the key changes for the priority catchments at GWL2 are given in Table 
20. ‘Unclear’ means that either there is low multi-model agreement on the direction of 
change or that there is not a significant change. 

Table 20: Summary of the changes in the flood indicators for the priority catchments. 

Catchment (NCRA region) Median changes 
in rainfall 
intensity 

Median changes in 
flow intensity 

Median changes in 
flood impact 
potential 

Hawkesbury (NSW) +6 % +11 % -1 % 

Sydney – Coast- Georges 
River (NSW) 

+6 % +11 % -1 % 

Mary River (QLD South) Unclear +5 % Unclear  

South Coast (QLD South) Unclear +5 % Unclear 

Brisbane River (QLD South) Unclear +5 % Unclear 

Torrens River (SA) Unclear Unclear +10 % 

Yarra River (VIC) +2 % -17 % +4 % 

Bunyip River (VIC) +2 % -17 % +4 % 
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Confidence 

The ACS Projections dataset does not include the full range of CMIP6 models and 
therefore might not capture the full range of plausible changes in rainfall. However, the 
models that were chosen were subject to the following criteria:  

• Adequately capture the multi-model spread,  
• Adequately model Australian climate drivers and processes. 

The National Hydrological Projections dataset does not encompass the full range of 
CMIP5 models and therefore might not capture the full range of plausible changes in 
runoff and soil saturation. However, the models that were chosen were subject to the 
following criteria:  

• Adequately capture the multi-model spread,  
• Adequately model Australian climate drivers and processes, 
• Contain daily fields of hydrological model inputs.   

Therefore, the individual ensemble members represent the range of plausible futures 
and are a key element of establishing scenario driven hazard assessments. 

The confidence in changes for the hydrological indicators is assessed as low due to 
limitations in GCM availability (see NHP data, Wilson et al., 2022), the ability of models 
to simulate processes, consistency with other studies, and our understanding of 
mechanisms. Although, it should be noted that the direction of changes are consistent 
with the recently published State of the Climate reports (2020-2024). 

The confidence in changes for the climate indicators is assessed as medium to high 
due to the larger spread of models and updated model physics for the CMIP6 GCM data. 

References: 

Su CH, Stassen C, Howard E, Ye H, Bell S, Pepler A, Dowdy AJ, Tucker SO, Franklin 
C (2022) BARPA: New development of ACCESS-based regional climate 
modelling for Australian Climate Service, Bureau Research Report 69, 
http://www.bom.gov.au/research/publications/researchreports/BRR-069.pdf  

Wilson L and Coauthors (2022) A national hydrological projections service for 
Australia. Clim. Serv., 28, 100331, 
https://doi.org/10.1016/J.CLISER.2022.100331. 

Zhang, L., Chiew, F., & Hatton. (2022). Hydroclimate of the Murray-Darling Basin. 
Australian Academy of Technological Sciences and Engineering. 
https://www.atse.org.au/media/ydpd1vmb/mdb-essay-1-zhang.pdf 
https://doi.org/10.60902/3h4q-w402. 
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5.4. Coastal hazards 

Contributors 

Ben Hague, Julian O'Grady, Xuebin Zhang 

The National Climate Risk Assessment identified two coastal hazards as a priority: 
coastal and estuarine flooding, and coastal erosion and shoreline change. These are 
combined into a single section as some indices provide information on both hazards. 

Key findings 

• Present-day extremes and flood events will become increasingly frequent, and 
eventually, chronic under the sea-level rise increments considered for the 21st 
century. On average, minor flooding occurs 15 days per year in the current 
climate (0.06 m sea-level rise increment), but will increase to 39 days, 102 days 
and 208 days per year once sea-level rise reaches 0.2 m, 0.38 m and 0.60 m 
increments. 
 

• A typical 1-in-100-year event (1% annual exceedance probability, AEP) becomes 
an annual occurrence at most locations with only 0.32 m additional sea-level rise.  

 

• Flood extents associated with a 1% AEP will increase with further sea-level rise. 
Queensland currently has the largest flood extents (median 229 km2 per LGA) 
and expects the largest increases in flood extent in terms of area (median 29 km2 
per LGA) with 0.54 m additional sea level rise. Under the same scenario, New 
South Wales has the greatest percentage-wise increase in flood extent, more 
than doubling from a median 3.54 km2 per LGA to 10.05 km2 per LGA. 
 

• Based on the current available science, episodic coastal erosion will increase, 
but we cannot say with confidence whether long-term coastal erosion and 
shoreline change will increase or decrease in the future.  

 

Indices 

The indices we used to deliver coastal hazard insights on coastal and estuarine flooding 
(CEF) and coastal erosion and shoreline change (CESC) are summarised in Table 21. 
Four coastal flood metrics were used, each employing a different approach to assess 
impacts. These metrics indicate the frequency of high tide flooding at specific locations, 
the area of land within an LGA inundated during extreme events, and the increased 
frequency of extreme flooding in both estuarine and open ocean environments due to 
sea level rise around the Australian coast. 

Hazard indices are applicable to different combinations of hazards and environments. 
Two environmental classifications are considered – sheltered and open coasts. 
Sheltered coasts include harbours, bays and estuaries, where waves do not make 
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substantial contributions to coastal hazards. In contrast, open coasts include beaches 
and cliffs where waves do make substantial contributions to coastal hazards. 

Table 21: Indices for coastal hazards. 

Index name Description Relevant 
Hazard/s 

Relevant 
Environments 

Flood days Days per year exceeding the impact-
based minor flood threshold 

CEF Sheltered 

Record days Days per year exceeding the highest 
sea level recorded in the last 20 years 

CEF Sheltered 

Flood extent Area with a 1% chance of flooding 
annually 

CEF Sheltered & 
Open 

Multiplication 
Factor (MF) 

Storm-tide MF: Factor of frequency by 
which storm-tide-related coastal 
hazards will increase due to sea level 
rise. 

CEF Sheltered  

Total Water Level MF: Factor of 
frequency by which total water level-
related coastal hazards will increase 
due to sea level rise. 

CEF & 
CESC 

Open 

 

Data sources 

‘Flood days’ and ‘Record days’ were based on peer-reviewed data produced through 
the ACS, derived from IPCC projections and the ANCHORS dataset (Hague and Talke 
2024). The dataset is currently available on figshare: 
https://doi.org/10.6084/m9.figshare.24328903.v1.  

Flood extent data is sourced from the CSIRO Probabilistic Coastal Inundation Layers 
product (O’Grady et al., 2024). 

Data sources for the multiplication factor are those used to estimate extreme total water 
level in O’Grady et al. (2019a). This includes storm surge, tides, waves and beach slope 
datasets. The multiplication factor (see definition in Table 21) is computed from the 
resultant Gumbel scale parameters following the formula of Hunter (2012). For storm-
tide only, Gumbel scale parameters are also estimated from Australian tide gauge 
records in a global tide gauge dataset (Haigh et al. 2022). 

Limitations 

All datasets leverage the 'mean sea level offset' approach, which is one of two projection 
methods recognised in the IPCC AR6 to project future changes in sea level extremes 
(Fox-Kemper et al. 2021). This approach first defines historical distributions of sea level 

https://doi.org/10.6084/m9.figshare.24328903.v1
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(from gridded hindcasts or tide gauges) and then determines future distributions by 
shifting the distribution by a specified amount of mean sea level, increasing all values in 
the distribution (and associated statistics) by that increment. Using this approach 
leverages two key assumptions – there are no future changes in sea level variability on 
any timescale (stationarity of variance) and that thresholds of concern remain unchanged 
(stationarity of threshold) (Hague et al. 2024a). Each dataset then has its own unique 
additional assumptions. For example, Hague and Talke (2024) assume independence 
between storm surges and tides (Williams et al. 2016; Santamaria-Aguilar and Vafeidis 
2018). Multiplication factors assume that return levels follow a Gumbel distribution, which 
implies that exceedances of all thresholds increase by the same factor, regardless of the 
threshold's present-day frequency (Buchanan et al. 2017).  

Limitations arise from applying methods or interpreting results in circumstances where 
assumptions do not hold. Firstly, tidal ranges and storm surges have changed in the past 
(McInnes et al. 2024; Hague et al. 2023a) and are likely to continue changing into the 
future (Harker et al. 2019; Colberg et al. 2019), violating the stationarity of variance 
assumption. This limitation remains in the data, however we note that these changes in 
tidal range and storm surges are likely second-order effects on flood hazard changes 
compared to changes in mean sea level (McInnes et al. 2015; Hague and Talke 2024). 
Secondly, different flood thresholds at the same location have observed different 
changes in exceedance frequency (Hague et al. 2020), suggesting the Gumbel 
distribution fitted to the annual maxima does not hold once events become more frequent 
than annual occurrences (Stephens et al. 2018; Ghanbari et al. 2019; Hague et al. 
2024a). This limitation is addressed by reporting multiplication factors greater than 200 
(implying a "1-in-100-year" event becomes a "twice a year event") as "> 200", rather than 
reporting the exact value.  

Additional factors not included in the models and data can influence coastal hazards, 
which could result in changes in hazards to be different to that expected based on 
presented indices. For flooding, the effects of freshwater inflows into estuaries are not 
(fully) represented in tide gauge observations and models. Hence, the metrics and data 
provided here do not consider compound flooding in estuaries. ACS has supported the 
development of a regional case study (Hague et al. 2024b) on how the influence of 
coastal flood drivers on estuarine flooding will change under sea-level rise. For erosion, 
our modelling does not account for processes including shifts in wave direction, 
degradation of protective coastal ecosystems (e.g., coral reefs, mangroves), and 
changes in sediment supply (e.g., from deeper waters or riverine discharge). 

Identifying suitable indices for monitoring and predicting coastal erosion and shoreline 
change over time remains an area of active research. Ongoing sea-level rise has 
increased the frequency of extreme sea levels nationwide, leading to multiplication 
factors greater than one in all locations. Despite this, some studies show there is no net 
Australia wide trend towards increases in coastal erosion and shoreline change hazards 
on global or national scales (Ghanavati et al. 2023; Nanson et al. 2022; Bishop-Taylor 
et al. 2021). Furthermore, changes in wave direction have led to coastal erosion and 
shoreline change on local and regional scales (Gallop et al., 2020; O’Grady et al., 



 CLIMATE HAZARD INFORMATION DEVELOPED FOR USE IN CLIMATE RISK ASSESSMENT 

 

98 

 

2019b). Sediment types are also a modulating factor (Leach et al. 2020; Thom et al. 
2018). How these aspects influence the hazard cannot be considered in the 
multiplication factor. 

Outputs 

The following outputs are provided on the github page: 
https://github.com/AusClimateService/hazards-coastal: 

• Plots of coastal flood days under sea level rise increments 
• Plots of multiplication factors under sea level rise increments 
• Code to produce the above 

The following outputs are provided on ia39: 

• Data and plots of multiplication factor (g/data/ia39/ncra/coastal/MF/) 
• Data (g/data/ia39/ncra/coastal/flood_days/) and plots  

(g/data/ia39/ncra/coastal/Plots/) of coastal flood days 
• Shapefiles and statistics for flood extents for LGAs 

(g/data/ia39/ncra/coastal/flood_extents/) 

Current maturity 

The ACS Hazard Stocktake (Hirst et al. 2025) assessed the maturity of coastal and 
estuarine flooding as 'Developed', indicating a mostly mature capability within Australia 
with only one or two significant limitations. Coastal and estuarine flooding hazard 
capability was assessed as more mature than all other hazards, except for 'Heatwave 
and extreme heat' which was also assessed as 'Developed'.  

The ACS Hazard Stocktake assessed the maturity of coastal erosion and shoreline 
change as 'Basic Research Online', indicating low confidence and experimental results. 

Use for risk assessments: 

To conduct a risk assessment, hazard information must be combined with information 
on exposure and vulnerability to the hazard, as well how risk management responses 
can change each component (Simpson et al. 2021). The World Meteorological 
Organization defines a hazard as a phenomenon "that poses a level of threat to life, 
property or the environment". Hence, sea level (a phenomenon) only becomes flooding 
(a hazard) once it reaches a certain height is associated with some degree of threat 
(Mahmoudi et al. 2024; Rasmussen et al. 2022).  

Hazard indices are constructed to be useful for hazard assessments, and in combination 
with combined with exposure and vulnerability information for risk assessments. 

- The use of flood days assumes that flood threshold relevant for decision-makers 
are exceeded  

- The use of Multiplication factors assumes that the flooding is sufficiently rare so 
its frequency and height can be robustly estimated using a Gumbel extreme value 
distribution (Hunter 2012).   

https://github.com/AusClimateService/hazards-coastal
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- The 1% AEP is presented here because of its utility for design storms. However, 
decision-makers will ideally consider a range of AEPs. 

Based on the assessed maturity in the ACS Hazard Stocktake (Hirst et al. 2025), the 
current coastal erosion and shoreline change hazard information is "insufficient to 
address user needs at a qualitative level". However, the index could be intersected with 
coastal morphology data, to inform a vulnerability assessment for soft and hard 
shorelines. The information provided by the multiplication factors could identify locations 
where sea level extremes and soft shore coasts are most susceptible to sea-level rise 
for further investigation considering additional factors that influence the hazard on local 
scales (Sharples et al. 2020; Konlechner et al. 2020). 

Proposed future indices 
We propose developing indices based on new sea level hindcast data. Future research 
is required to identify indices that are sensitive to how climate change, including both 
sea-level rise and weather pattern shifts, impact coastal erosion and shoreline change 
hazards. The application of the so-called 'Bruun Rule' (Bruun 1988) for this purpose has 
become controversial and is viewed as too simplistic by many scientists (e.g., Cooper et 
al., 2020; McCarroll et al., 2021). Indices for predicting coastal erosion and shoreline 
change on shorter timescales (e.g., Leaman et al., 2021; McCarroll et al., 2024) could 
be investigated in the longer-term context. 

Results 

Present-day extremes and flood events will become increasingly frequent, and 
eventually, chronic under the sea-level rise increments considered for the 21st century. 
On average, minor flooding occurs 15 days per year in the current climate (0.06 m sea-
level rise increment), but will increase to 39 days, 102 days and 208 days per year once 
sea-level rise reaches 0.2 m, 0.38 m and 0.60 m increments (Figure 30a). An additional 
0.14 m sea-level rise will result in an eight-fold increase in frequency of sea-level 
extremes on average. Under 0.32 m additional sea-level rise, this becomes an average 
118-fold increase, and a more-than-200-fold increase under 0.54 m additional sea level 
rise (Figure 30b). This means a typical 1-in-100-year event becomes an annual 
occurrence at most locations with only 0.32 m additional sea-level rise. 
Contemporaneous work on developing impact-based flood thresholds and identifying 
past coastal flood events have allowed such projections to be contextualised based on 
recent impacts (Figure 31). This assists with communicating the consequences of sea-
level rise to decision makers in a relatable way (Mahmoudi et al. 2024; Rasmussen et 
al. 2022).  

Flood extents associated with a 1% annual exceedance probability (AEP) will increase 
with further sea-level rise. This is a flood extent that has a 1% chance of occurring each 
year in a baseline climate. The amounts by which the 1% AEP flood extent increases 
vary greatly between Local Government Areas (LGAs). Queensland currently has the 
largest flood extents (median 229 km2 per LGA) and expects the largest increases in 
flood extent in terms of area (median 29 km2 per LGA) with 0.54 m additional sea level 
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rise (Figure 32). Under the same scenario, New South Wales has the greatest 
percentage-wise increase in flood extent, more than doubling from a median 3.54 km2 
per LGA to 10.05 km2 per LGA. 

While shorelines will move inland, we are not in a position to provide quantitative 
projections for changes in erosion and shoreline change. Coastal extreme water levels 
will become more frequent due to future sea-level rise but need more information to find 
out if these will lead to more frequent coastal erosion or larger shoreline changes both 
generally and locally. The largest increases are expected in Queensland (Figure 30c), 
although extreme total water level multiplication factors are less than storm-tide 
multiplication factors at all locations. 

   

Figure 30: Median estimates of increase (a) minor flood days (left), (b) sea-level extremes (centre) and (c) 
extreme erosion (right), at 0.2 m, 0.38 m, 0.6 m and 1.0 m SLR increments, relative to the present-day (0.06 
m increment). 
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Figure 31: Example of relating future floods to their impacts to assist with briefings. This example shows the 
highest event in the last 20 years at Melbourne, and associated impacts, and how often these water levels 
are expected under 0.2, 0.6 and 1.0 m sea-level rise.  

 
Figure 32: Flood extent for 1% AEP by LGA under 0.6 m SLR increment compared to present-day (0.06 m). 
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5.5. Marine extremes 

Contributors 

Richard Matear (Lead), Pearse Buchanan 

Key messages 

• The ocean environment around Australia is warming and acidifying. These are 
observable trends that will continue for all GWLs (high confidence) (Table 23). 

• Ocean warming occurs everywhere, with a hotspot in the Tasman Sea where the 
poleward migration and intensification of the East Australian Current transports more 
warm water south (high confidence the region will experience enhanced warming) 

• Ocean warming increases the occurrence of heat extremes. By GWL 3.0 a near-
permanent heatwave state occurs in the Tasman Sea, and conditions for extensive 
coral bleaching in Northern Australia 

• For the heat stress metrics, there is an acceleration in severity as one goes from 
GWL 2.0 to GWL 3.0 

• Ocean acidification occurs in the surface water around Australia at nearly a 
constant rate.   

• In shelf regions, the drop in aragonite saturation state at the ocean bottom is similar 
to the surface, and further offshore along the continental shelf, the undersaturated 
water at the ocean bottom shoals with increasing GWLs. 

• Under-saturated surface conditions for aragonite will occur in the Southern Ocean 
by GWL 3.0, threatening calcifying plankton species. 

• There is low confidence in the magnitude of the change in net primary productivity 
with medium confidence in the sign of change for the Australian region except in 
Northern Australia, where there is low confidence in the magnitude and sign of the 
change. 

 

Introduction 

Oceans play critical roles in the Earth’s climate system by storing and transporting heat, 
fresh water and carbon. The storage of heat and carbon in the oceans slows the rate of 
atmospheric warming caused by human emissions of greenhouse gases, mainly carbon 
dioxide (CO2). This alters the ocean state and affects marine ecosystems that must 
adjust to changing conditions. Australia’s climate and weather are also influenced 
profoundly by regional and global processes driven substantially by the oceans. The 
exchange of heat and moisture between the ocean and atmosphere drives key climate 
features that, in turn, directly affect the weather and climate of Australia’s terrestrial 
environments, including rainfall, temperature, and the frequency and intensity of extreme 
weather events. Significant climate-driven changes in ocean environments are projected 
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over the next century. This section briefly presents the oceanographic setting around 
Australia and discusses the projected changes in the ocean environment with rising 
Global Warming Levels (GWLs). The changes in the ocean environment manifest as 
changes in the mean state and in ocean extremes (Table 22).    

Table 22: Ocean diagnostics used to characterise the change in the environment with global warming. 

  Diagnostic Comments 
Warming Sea surface temperature Mean state  
  Marine heatwave (MHW) duration and magnitude Extreme 
  Degree Heating Week (DHW) Extreme 
  Bottom Temperature Mean state 
Acidification Surface Aragonite Saturation State Mean state 
  Surface pH Mean state 
  Bottom Aragonite Saturation State Mean state 
Other Net Primary Productivity (NPP)_ Mean state 
  Mixed Layer Depth Mean state 
  Bottom Stress Mean state 
  Sea Surface Height Mean state 

 

Oceanographic Setting 

Australia sits at an oceanic crossroads, flanked by the Indian, Pacific, equatorial and 
Southern Oceans (Figure 33). 

 
Figure 33: Schematic view of the major Australian surface ocean current systems (Source: adapted from 
the CSIRO report to DSEWPaC, 2011). 
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The Indonesian Throughflow carries relatively fresh seawater westwards from the Pacific 
to the Indian Ocean through the Indonesian archipelago. The Indonesian Throughflow 
feeds the southward flow of the Leeuwin Current off the west coast. The world’s largest 
ocean current, the Antarctic Circumpolar Current, flows from west to east between 
Australia and Antarctica. The east coast of Australia is influenced by the East Australian 
Current, the western boundary current of the large anticlockwise gyre that spans the 
subtropical latitudes of the Pacific Ocean.  

These large-scale ocean circulation patterns are linked to surface winds and their 
variability. The easterly trade winds near the tropics and westerly winds further south 
determine the strength of the subtropical gyres that span the Indian and Pacific Ocean 
basins. The Indonesian Throughflow and the Leeuwin Current vary primarily in response 
to winds over the tropical Pacific at seasonal, inter-annual and decadal timescales. Local 
winds drive variability of boundary currents, such as the East Australian Current, and the 
upwelling of nutrient-rich waters in some coastal locations. Therefore, the current 
systems near Australia respond to local and distant changes in wind patterns.  

Ocean currents strongly influence Australia's terrestrial and marine environment by 
transporting heat, water, nutrients and organisms. Ocean currents along the equator are 
critical players in variations in the strength of the Leeuwin Current off Western Australia 
and are linked to the productivity of the West Australian lobster fishery. In contrast, a 
southward expansion of warm East Australian Current waters has catalysed a shift from 
kelp forest to urchin barrens along much of Tasmania’s east coast. Knowledge of ocean 
currents is essential for the design of coastal and offshore infrastructure, effective search 
and rescue, defence operations and sustainable management of marine resources. 

Atmospheric and oceanic processes influence the distribution of temperature, salinity, 
nutrients, and biological productivity around Australia. Sea-surface temperature 
decreases from north to south, warms in summer, and cools in winter. Warm waters 
extend further south along the east and west coasts, reflecting the southward flow of the 
East Australian and Leeuwin Currents, respectively.  

Surface waters surrounding Australia generally lack nutrients, resulting in low biological 
productivity. Exceptions include the northern continental shelves and a wide band south 
of the continent known as the Subtropical Convergence, where deep winter mixing brings 
nutrients to the surface layer (Figure 33). Upwelling of nutrient-rich waters occurs off the 
Bonney coast of South Australia and Victoria in summer and sporadically off the West 
Australia and New South Wales coasts. Deeper, colder waters tend to be richer in 
nutrients and localised upwelling brings these nutrient-rich waters to the surface where 
they ‘feed’ shallower water ecosystems.   

Future Projected Changes 

We have relied on an ocean eddy-resolving model to provide a quantitative perspective 
on how the ocean environment changes with climate change (OFAM3, Oke et al., 2013). 
The future ocean simulation uses the multi-model mean trend CMIP5 atmospheric 
forcing fields from their RCP8.5 projections to drive this eddy-resolving ocean model 
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(Zhang et al., 2016). To characterise the changes in the ocean environment with global 
warming, 11 diagnostics were computed, summarised in Table 22. The future ocean 
simulation has been used in several studies to investigate how the ocean environment 
changes with global warming (see OFAM references listed below). 

Warming and Heat Extremes 

Oceans absorb ~90% of the additional heat in the Earth system as the planet’s surface 
warms. However, the surface ocean around Australia tends to warm more slowly than 
the Australian land surface, 1.08 °C vs. 1.51 °C, since 1900 and 1910 respectively (BoM 
2024). The ocean warming trend, as evident in the observations, will continue with global 
warming. Key indicators of ocean warming are changes in ocean temperatures and 
changes in the frequency and magnitude of extreme ocean temperatures.  

At the surface, the annual mean temperature of the oceans around Australia warms from 
the current state of GWL 1.2°C (Table 23).  The ocean surface warming increases with 
GWL levels, with the projected warming of the oceans around Australia being less than 
the global mean value. For example, at GWL 3°C, the global mean temperature 
increases by 1.8°C from GWL 1.2 while the ocean around Australia warms by an average 
of 1.3°C.   The projected surface ocean warming occurs in all regions around Australia, 
with a slight reduction in warming as one goes poleward (Figure 34).  

 
Figure 34: Sea surface temperature of the Australia region in the current climate, and the change in sea 
surface temperature at GWL 1.5, 2.0 and 3.0°C. 

The most prominent spatial feature in the figures is the enhanced warming in South-east 
Australia (Tasman Sea). This region of rapid warming is apparent in the observations 
(Wu et al., 2012) and is attributed to the poleward shift and/or intensification in the East 
Australian Current (EAC). The rapid warming in the Tasman Sea is about 3x the average 
warming of the global ocean surface. It is projected to continue with global warming as 
the EAC shifts south and intensifies. The rapid warming of the Tasman is a robust feature 
of climate projections and is linked to the poleward shifts in the winds in the subtropical 
South Pacific (high confidence).  

Northwest Australia is another region of slightly enhanced warming. The ENSO cycle 
significantly influences the region, with La Niña increasing Indonesian Through Flow and 
Leeuwin Current transport and warming the ocean off NW Australia. The enhanced 
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warming in NW Australia is partly an artefact of the future atmospheric forcing used to 
force the ocean model because only the projected trend in the forcing comes from the 
CMIP5 projections. The weather and interannual variability come from the observed 
variability from 1981–2012 repeatedly three times (2006–2037, 2038–2069, and 2070–
2101). The CMIP5 projected trend is applied on top of this variability.  Over the historical 
period (1981-2012), there tended to be more La Niña-like state, which led to a warming 
bias in the region in the future projection. However, the CMIP6 climate projections 
generally project a more El Niño-like state, but this response may take several decades 
to emerge from interannual and decadal variability (Bai et al., 2023; Ying et al., 2022). 
Hence, there is low confidence in the enhanced surface ocean warming off NW Australia. 

Ocean warming is not restricted to the surface. Ocean circulation and upper ocean 
mixing processes transport warmer surface water into the ocean interior, ensuring that 
the entire ocean will change with global warming. For water shallower than 200 m, the 
bottom temperature warming is similar to the surface warming showing that the benthic 
environment in these waters shows little delay in warming from the surface. 

The warming trend in the ocean with global warming will also alter the occurrence of 
extreme temperatures in the ocean. The marine heat wave diagnostic (Hobday et al., 
2016) characterises heat waves in the open ocean. For the Australian region, the mean 
annual duration of MHWs increases rapidly with GWLs from 22 days at GWL1.2 to 161 
days at GWL 3 (Table 23). The increase in the MHW duration is most evident in Northern 
Australia, along the coasts and in the Tasman Sea (Figure 35). In these regions, 
specifically, conditions at GWL 1.5 are consistent with only a slight increase in MHW 
duration. However, at GWL 2, the MHW duration in these regions is about 140 days and 
by GWL 3 these regions’ MHW duration is nearly permanent (greater than 320 days). 
The mean magnitude of the MHWs stays below 0.5°C for all GWLs except GWL 3 when 
Northern Australia and the Tasman Sea mean MHW magnitude exceeds 1°C.  The mean 
magnitude present here is less than the previous analysis from the same simulation 
(Hayashida et al., 2020) because the reference period used for detecting MHW was 
based on the GWL 1.2 period. At GWL 3, MHW's magnitude and duration increase 
rapidly from the values at GWL 2.   

 
Figure 35: Marine heatwave days per year for the Australia region in the current climate, and the change in 
heatwave days per year at global warming levels 1.5, 2.0 and 3.0°C. 



 CLIMATE HAZARD INFORMATION DEVELOPED FOR USE IN CLIMATE RISK ASSESSMENT 

 

110 

 

To quantify the cumulative thermal stress experienced by coral reefs, the thermal stress 
diagnostic Degree Heating Week (DHW) is used (Toscano et al., 1999). DHW greater 
than 4°C-weeks is associated with coral bleaching, and DHW greater than 8°C-weeks 
with widespread coral bleaching (Liu et al., 2006). The GWL 1.2 period determines the 
maximum monthly temperature threshold used in the DHW calculation.  It is only at GWL 
3 where DHW rapidly increases in Northern Australia and parts of the Great Barrier Reef 
and approaches 8°C-week, a value associated with widespread coral bleaching. 

Acidification 

About 28% of anthropogenic CO2 emissions since 1800 have been absorbed by the 
oceans (Friedlingstien et al., 2022). This carbon added to the oceans affects seawater 
chemistry, making it more acidic. This process has been called ocean acidification (Orr 
et al., 2005). Ocean acidification is an observable long-term trend (BoM and CSIRO 
2024) with chronic and acute impacts on marine organisms and ecosystems (Aze et al., 
2014).    

Ocean acidification is typically represented by changes in pH and in aragonite and calcite 
saturation states; the latter two diagnostics provide information on organisms’ ability to 
calcify (e.g., coral reef for aragonite and coccolithophores for calcite). Here, we use pH 
and aragonite saturation state to represent ocean acidification.  In the open ocean, 
CMIP6 simulations do represent the large-scale future changes in ocean acidification 
(Kwiatkowski et al., 2022). However, in the continental shelf regions of Australia, CMIP6 
models are too coarse to represent the ocean dynamics and shelf regions, and the 
CMIP6 models under-estimate ocean acidification variability and change (Mongin et al., 
2016). 

At the surface, the aragonite saturation state declines with increasing GWLs consistent 
with rising atmospheric CO2 and ocean CO2 uptake. In the Australia region, the decline 
is ubiquitous, with a slightly reduced decline as one goes poleward. The pH changes 
show a similar behaviour (Figure 36). GWL 3, regions of the Southern Ocean become 
undersaturated with respect to aragonite (less than 1) and the surface water becomes 
chemically corrosive to the aragonite form of calcium carbonate that form the shells of 
calcifying plankton, such as pteropods. This change threatens to alter the community 
composition of Southern Ocean marine ecosystems. 

The aragonite saturation state naturally declines with ocean depth until undersaturation 
occurs. However, ocean acidification shoals the depth horizon at which this 
undersaturation occurs, otherwise known as the lysocline, as anthropogenic carbon is 
transported into the ocean interior. Around Australia, coastal waters at the ocean bottom 
have declining aragonite saturation values, with the lysocline rising on the continental 
slope. This may impact benthic ecosystems, including those comprised of corals. 
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Figure 36: Ocean acidification (pH) for the Australia region in the current climate, and the change in pH at 
global warming levels 1.5, 2.0 and 3.0°C. 

Productivity 

In the ocean, microscopic marine plants (phytoplankton) are the primary organisms that 
take light and ocean nutrients and convert them into living tissues that ultimately feed 
most ocean ecosystems. This process is called primary production. Ocean net primary 
production is projected to decline as ocean warming and changing circulation reduce the 
supply of nutrients to the upper oceans. However, CMIP6 projections of changes in net 
primary production are highly variable regionally, and the pattern of changes generally 
shows the largest declines in the mid and low (tropical) latitudes, with slight increases in 
the Southern Ocean (Kwiatkowski et al., 2022). However, this pattern of change is 
uncertain, and recent studies with the eddy-resolving ocean simulations suggest 
increases in net primary production in the Tasman Sea and the western Equatorial 
Pacific (Matear et al., 2013 and 2015) that are not reflected by the non-eddy resolving 
models. In the Australian region, the changes in net primary production tend to decline 
along the east coast and increase along the north coast, the Tasman Sea and the 
Southern Ocean. As with ocean warming, the trend in Northern Australia is uncertain 
due to the La Niña bias in the atmospheric forcing fields used. The increasing net primary 
productivity in the Tasman Sea and Southern Ocean and declining productivity in the 
subtropical water off east Australia are consistent with previous studies (medium 
confidence). However, modelling net primary productivity is complex, resulting in low 
confidence in the magnitude of change.   

Summary  

The oceans absorb heat and carbon as rising atmospheric CO2 warms the planet. Ocean 
warming and acidification are observable long-term trends with chronic and acute 
impacts on marine organisms and ecosystems. Warming and acidification are evident in 
all marine environments around Australia. The warming trend will change the occurrence 
of extreme heat events like marine heat waves. 
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Confidence 

For ocean warming and ocean acidification, there is high confidence in the direction of 
change, medium confidence in the magnitude of change and low confidence in the 
ecological consequence of the changes. (consistent with IPCC AR6). 

Limitation 

The future ocean simulation presented is not well suited to representing the high-
resolution dynamics and features of Australian coastal areas. 

Table 23: Summary statistics for marine extremes. 

  Current Future 
Metric GWL 1.2 GWL 1.5 GWL 2.0 GWL 3.0 
Sea surface 
temperature [°C] 

23.4 °C  
  

+ 0.3 °C  
High confidence 

+ 0.7 °C  
High confidence 

+ 1.3 °C  
High confidence 

Marine heatwave 
duration [days/year] 

18  
  

+ 22 days 
High confidence 

+ 77 days 
High confidence 

+ 161 days 
High confidence 

Marine heatwave 
magnitude [°C] 

0.02 °C  
  

+ 0.05 °C  
High confidence 

+ 0.19 °C  
High confidence 

+ 0.61 °C  
High confidence 

Degree heat week 
mean 

0.004  
  

+ 0.03  
High confidence 

+ 0.16 
High confidence 

+ 2.07  
High confidence 

Aragonite saturation 
state – Acidity 

3.38  
  

- 0.18 
High confidence 

- 0.40 
High confidence 

- 0.80  
High confidence 

 

Additional information 

The github page contains code, figures and additional information  
https://github.com/AusClimateService/hazards-ocean.  
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6. Accessing data, scripts and supporting 
information 

6.1. Accessing data 

Data on NCI 

At the time of writing, ACS data and information on NCI is being held in three projects. 
Summary information is provided in Table 24. Note that project membership is required 
to access data in the project and a compute allocation is required to undertake analysis 
of data in-situ on NCI. 

Climate projections data on NCI can be interrogated using a bespoke tool, the ‘Data 
Finder’. The tool allows users to a) list available datasets filter them based on attributes 
such as the GCM or RCM and years. The tool and supporting documentation can be 
accessed at https://github.com/AusClimateService/dataset_finder.  

Table 24: ACS Climate projections and hazard information on NCI. 

Information Regional climate 
change projections 

 

Key hazard 
summary 
products 

ACS Hazard 
Information 

 

Project ID kj66 bk45 ia39 

Content • One-stop shop for 
climate projections 

• Data have been 
regridded to common 
resolution of 5 km 

• Original and bias 
adjusted data are 
available 

Key hazard 
products 
developed for 
Climate Hazard 
Portal 

• Hazard information 
produced by ACS 
hazard teams (with 
some exceptions) 

• Includes intermediate 
steps, figures and 
summary statistics 

Access Requires project 
membership 

Requires project 
membership 

Requires project 
membership 

Target 
audience 

• Hazard Teams 
• ACS Partners,  
• Anyone requiring 
access to the 
underpinning climate 
projections 
(researchers, 
technically versed 
customers) 

• Potentially ACS 
Platform 

Developers of 
the Climate 
Hazard Portal 

• Hazard Teams – 
working area 

• NCRA Risk Teams – 
accessing hazard 
information 

• Users with technical 
skill to analyse large 
volumes of data 

 

https://github.com/AusClimateService/dataset_finder
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6.2. Metadata 
Metadata for the hazard information presented in this report is summarised in a 
spreadsheet and can be accessed on the ACS GitHub pages 
https://github.com/AusClimateService/HazardMetadata/tree/main  

This covers: 

• The descriptive name of the dataset 
• A description of the index used 
• A DOI (where applicable) 
• The period for which data is available 
• The spatial extend over which the information is available 
• The spatial resolution 
• The Global Warming levels for which data is available  
• Additional information 
• The path to access the hazard information on NCI 

6.3. Supporting documentation 
Publicly accessible GitHub (https://github.com/AusClimateService pages provide 
supporting documentation on  

• Hazard Information 
• Bias correction 
• Downscaling 
• Model evaluation 
• Links to relevant Python scripts 

https://github.com/AusClimateService/HazardMetadata/tree/main
https://github.com/AusClimateService
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