

(Non)-intervention strategies for TC forecasting

Traditional subjective process Vs overwhelming info: sat/NWP etc

Increasing demands for hazard/impact and probabilistic info

Objective methods in the TC Process – how useful are they? When to use them?

Where should we be headed in the future?

Joe Courtney, joe.courtney@bom.gov.au TC operational and research practitioner BoM Training Centre, Perth

R&D workshop, 23 November 2020

Forecast process: challenge do all this in 3h! Role of objective methods throughout?

Recent objective methods being used

'Intervention': understanding limitations and communicating these to customers

Analysis: position subjective

Subjective: Obs, Radar (no objective), Vis, IR, Microwave, scatterometer (ASCAT, SCATSAT), previous policy (consistency check).

Images courtesy: NRL.

Analysis: objective position ARCHER technique (CIMSS)

http://tropic.ssec.wisc.edu/real-time/archerOnline/web/index.shtml

ARCHER good when easy but poor when difficult limiting usefulness; good for scat but doesn't include SCATSAT/SMAP/SAR, radar, obs

Future: potential but needs major investment

Analysis: intensity more subjective inputs than SATCON

http://tropic.ssec.wisc.edu/real-time/satcon/

Subjective: Obs, Dvorak (Vis&IR), microwave patterns, scatterometer (ASCAT, SCATSAT, SMAP, SAR), NWP, previous policy (consistency check) Vs SATCON

SATCON: robust but has known weaknesses requiring forecaster insight; limitations poor for weak systems, ADT only uses IR; doesn't include; SCATSAT, SMAP, SAR, obs,

Future: useful but requires investment

Analysis: structure subjective

scatterometry; obs; convective patterns; NWP Objective: CIRA MTCSWA

https://rammb-data.cira.colostate.edu/tc_realtime/

MTCSWA: ASCAT; IR; AMSU; CDFT

Requires significant upgrade to be useful

Future: assimilation of observing platforms

Forecast intensity Traditional difficult and model underperformance

Objective methods: ICNW/SHIPS and RI guidance - blend of some NWP diagnostic/stats.

Bias correction of EC.

Some next steps

- Forecast track: from consensus of deterministic tracks to peak multi-model ensemble consistent with current uncertainty area.
- Extension of bias corrected super-ensemble to gale/storm/hurricane force onset/duration.
- Improved products (eg storm tide, TC outlook) and improved forecaster skills for interpreting objective output for customer decisions.
- Improved assimilation of observing/satellite platforms to NWP analysis (global modellers).

Reality Check: 03A 22 November (Gati)

Microwave image when classified as a tropical low (00UTC)

ADT was ~2.8 35-40kn SATCON 50kn but this image >65kn

Note at 06UTC JTWC increased to 80kn* (subjective) Vs SATCON 60kn* (1min)

*converted to 10min

Email Joe

Summary:

Progress made using objective output for probabilistic output but otherwise TC process still requires heavy intervention;

Objective methods need to blend information from many different sources e.g. super-ensemble and bias correction; don't provide single model methods!

When & where to intervene often depends on key decisions being made to focus attention in the process;

Increasingly forecaster time spent on interpretation rather than

'creation' 'forecaster as story-teller'.

Other questions joe.courtney@bom.gov.au