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How can we resolve events such as Lightning?

e Events such as Lightning are
linked to atmospheric process Yo
from a spectrum of spatial bx‘i e
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How do we Predict Thunderstorms?

* NWP processes can resolve scales ~ 1.5 km

* Graupel Flux - McCaul et al (2009)

* Lightning Potential Index - Yair et al. 2010

* Fierro et al (2013) — Charging Physics of the Cloud.

* Large Scale Indices (Haklander and van Delden
2003; Vujovic et al. 2015).

e Radar Nowcasting — Links between flash rate and Radar
reflectivity.
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How accurate are our forecasts?

* There are a variety of useful metrics for validation.
* Probability of Detection (hits) and False Detection (misses).

* We use regional-based accuracy metrics (e.g. the proportion
of lightning that was correctly forecasted) for all forecast lead

times.
e Accuracies are much better for 1-10 forecasts (not shown).
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ARTICLE
Nowcasting lightning occurrence from commonly available

meteorological parameters using machine learning techniques

Amirhossein Mostajabi(®', Declan L. Finney (27, Marcos Rubinstein® and Farhad Rachidi'*

How can we use Machine Learning ?

e Use complex model to capture abstract features
that are not captured in linear models.

e 2D Convolutional networks consider spatial
variability at a variety of scales (e.g., large-scale
flow).

e Techniques such as transfer learning.

* Literature has indicated that rainfall and lightning
forecasts can improve with machine learning
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Lightning Observed in Auckland from Sep 13 2019 18:00 (UTC) - Sep 16 20192 03:00 (UTC)

What are we doing differently?

 Model training in real-time, updated with
forecasts.

* Using a variety of variables, and a
Convolutional Neural network to determin +—+——————————7———

complex relationships. W
* Using 2D forecasts (using 6 fields)and 1D & _ AL — AN/ |

forecasts (19+ variables + considering how | i
variables change in time) /\
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Methods (Lightning Forecasts in time)

latitude = -34.432, longitude = 172.682

3.01 —— Observed Lightning - 1200

* Vaisala Lightning Network (near  Modeled ghtning
instantaneous measurements of lightning). '
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* These are sampled with 10 km from the site
and are sampled within a 1-hour window

4 —— Boundary Layer Depth L 600

storm_locn
=
[9,}

from the forecast (to create a continuous '

like architecture).
* NZCSM model, sampled at 942 sites for 19 o o o oF o o & o %

forecasted variables. o enorting perions

» Validated against a baseline forecast.
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Model (Preliminary)

5-layer 1D Convolutional Neural Network.
1000 Lightning Events across New Zealand
(Even number of North Island and South

Island samples).
5000 Events without Lightning

Output: The probably of Lightning for sample

(single location).

Weighted binary cross-entropy loss function

(to handle data imbalance).
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Results (Training Set)

e 60/100 Lightning Events were predicted
up to 4 hours in advance.

* Baseline model accuracy predicted
20/100 Lightning events.

* Further model updates will include
smoothing the lightning inputs to
incorporate the importance of
uncertainty in forecasts.
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Transfer Learning

ImageNet randomly initialized Network trained to Fine-tune model

m weights classify 1000 classes (update weights)
. . : - 2o, and
Two Dimensional Model (ERAS5) - TF »-r-_: Sriigee

* Hourly gridded observations: Divergence, tooemsa . Newdata

'@ em==a ¥ | Newclasses
L™ ~f8Ea

temperature, relative humidity, vertical | R R L
velocity and geopotential height. |
e Gridded Lightning Data (25 km)
 ResNET34 Pre-trained model.
* Lightning Observations are spatially
smoothed to handle data imbalance.
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Forecast Lead Time 14 Hours

Results (Training Set)

Success metric — Intersection / Union %
Union: Total area of both observations
and forecasts. A

Area of overlap between observations
and “Al Forecast” is 15%.

Machine Learning over estimates the
area for which lightning occurs.

60% of the area is false positives (Al
forecast) and 25% misses.

In general there is good agreement
between the fields.
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Further work

* Use more data for validation techniques
* Use a Convolutional LSTM (CONVLSTM) network, to combine spatial and temporal
information to forecast lightning.
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Applications: Transfer Learning for Drought Forecasts

* Training the 1D Convolutional model on
monthly precipitation and drought
indices for forecasting.

* Using lagged indices of SOI, SAM,
Atmospheric flow indices across NZ (64
lagged months).

* We can explain about 50% of the
variance in rainfall and predict key o IJV
drought events. j

* Significant improve using linear methods.
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Normalised Precipitation Anomally

Results (Using SOI Alone)

Precipitation Hindcasts for Auckland Aero AWS (3-month)

0.06 -
1.5- = DECsEhomns
0.04 - —— Ground Truth
1.0 -
> 0.02-
0.5 - ©
£ 0.00-
<
0.0 -
S -0.02 -
O
=
-0.5- —-0.04 -
—1.0 - —®— Forecasted Precipitation Anomaly —0.06 -
—e— Observed Rainfall Anomaly
Auckland Drought
_1.5 T 1 1 1 1 1 1 1 1 1 1 ! ' ' ' ' I ‘ I ! ‘ ' ' ! ' ' ' ' ‘ I I ! I
o0 %,(f" %:\,0 g»Q'\’ 9‘0& g}d\ g:@ o A QDb‘ Q'Q'q' Q«“*Q 2015 2016 2017 . 2018 2019 2020
1S RS (VL S \E SN \ S\ S SO \ S (\ LA P\ time

Climate, Freshwater & Ocean Science @/’ Taihoro Nukurangi



metric = MSE

metric = MAE

metric = Explained variance

metric = Pearson correlation

train

Results
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