Development of AOM2/EnKF ocean forecasting system

Pavel Sakov¹,

with contributions from Paul Sandery², Russ Fielder², and Andrew Kiss³

 $^1{\rm Bureau}$ of Meteorology, Hobart, Australia $^2{\rm CSIRO}$ Oceans and Atmosphere, Hobart, Australia $^3{\rm Research}$ School of Earth Sciences, Australian National University, Canberra, Australia

COSIMA project is acknowledged for developing AOM suit

Bureau of Meteorology Annual R&D Workshop 23-26 November 2020

Outline

Introduction

DA system configuration

Spinup and initial performance

General verification

Introduction

BoM/Bluelink: planned transition to a new ocean forecasting system

Model: OFAM3 $^1 \rightarrow AOM2-01^2$

- ocean only (MOM5) → coupled ocean/sea-ice (MOM5/CICE6)
- rectangular grid (0.1°, 75 S to 75 N, $3600 \times 1500 \times 51$) \rightarrow global tripolar grid ($\sim 0.1^\circ$, $3600 \times 2700 \times 75$)

DA method: EnOI (EnKF-C) \rightarrow EnKF (EnKF-C)

Bluelink global ocean forecasting:

- since 2016 operationally using EnOI/OFAM3 system (with transition from BODAS to EnKF-C)
- 2012 development of EnKF/OFAM2
- 2017 development of EnKF/OFAM3
- 2020 development of EnKF/AOM2-01

¹OFAM3 = Ocean Forecasting Australia Model v.3 (Oke et al., 2013)

 $^{^{2}}$ AOM2-01 = ACCESS Ocean Model v.2 0.1-degree (Kiss et al., 2020)

Introduction

BoM/Bluelink: planned transition to a new ocean forecasting system

Model: OFAM3 $^1 \rightarrow AOM2-01^2$

- ocean only (MOM5) → coupled ocean/sea-ice (MOM5/CICE6)
- rectangular grid (0.1°, 75 S to 75 N, $3600 \times 1500 \times 51$) \rightarrow global tripolar grid ($\sim 0.1^\circ$, $3600 \times 2700 \times 75$)

DA method: EnOI (EnKF-C) \rightarrow EnKF (EnKF-C)

Bluelink global ocean forecasting:

- since 2016 operationally using EnOI/OFAM3 system (with transition from BODAS to EnKF-C)
- 2012 development of EnKF/OFAM2
- 2017 development of EnKF/OFAM3
- 2020 development of EnKF/AOM2-01

¹OFAM3 = Ocean Forecasting Australia Model v.3 (Oke et al., 2013)

²AOM2-01 = ACCESS Ocean Model v.2 0.1-degree (Kiss et al., 2020)

DA system configuration

- AOM2-01, coupled ocean/sea-ice (MOM5/CICE6)
- EnKF (EnKF-C)
- 96-member ensemble
- SLA from RADS, SST from NAVO, VIIRS, AMSR2, T and S from MMT, SIC from OSISAF (\sim 19 M super-obs. per cycle)
- 3-day cycle
- Localisation: 150 km for SLA and SST, 450 km for T and S
- R-factors: 4.5 for SLA, 48 for SST, 18 for T and S
- 3% capped inflation
- Forcing pert.: 15% SW, 30% rain, 10% wind, 15% humidity, 0.2% T
- no SST bias correction

Resources:

- ullet CPU: $\sim 120\, k$ CPUh/cycle (up from 9kCPUh for EnKF/OFAM3)
- Footprint: 7 11 TB
- Full ensemble restart: 1.8 TB

DA system configuration

- AOM2-01, coupled ocean/sea-ice (MOM5/CICE6)
- EnKF (EnKF-C)
- 96-member ensemble
- SLA from RADS, SST from NAVO, VIIRS, AMSR2, T and S from MMT, SIC from OSISAF (\sim 19 M super-obs. per cycle)
- 3-day cycle
- Localisation: 150 km for SLA and SST, 450 km for T and S
- R-factors: 4.5 for SLA, 48 for SST, 18 for T and S
- 3% capped inflation
- Forcing pert.: 15% SW, 30% rain, 10% wind, 15% humidity, 0.2% T
- no SST bias correction

Resources:

- ullet CPU: $\sim 120\, k$ CPUh/cycle (up from 9kCPUh for EnKF/OFAM3)
- Footprint: 7 11 TB
- Full ensemble restart: 1.8 TB

Dynamic covariance in sea-ice DA

Example of correlation between SIC at location marked "+" and SSS (Barents Sea, 27 June 2007, by TOPAZ4 ocean/sea-ice DA system)

(from Sakov et al., 2012)

System spin-up: total energy

System spin-up: innovation statistics

Comparison of absolute velocity field: EAC

AOM2-01: 29/3/2017, k = 22 (87 m) OFAM3: 28/3/2017, k = 12 (85 m)

Comparison of absolute velocity field: EAC (2)

AOM2-01: 29/3/2017, k = 22 (87 m) EnKF/OFAM3: 28/3/2017, k = 12 (85 m) EnOI/OFAM3: 29/3/2017, k = 12 (85 m)

Comparison of absolute velocity field: Agulhas

AOM2-01: 29/3/2017, k = 22 (87 m) OFAM3: 28/3/2017, k = 12 (85 m)

Comparison of absolute velocity field: Agulhas (2)

Comparison of absolute velocity field: South-West of Australia

AOM2-01: 29/3/2017, k = 22 (87 m) OFAM3: 28/3/2017, k = 12 (85 m)

Comparison of absolute velocity field: South-West of Australia (2)

Comparison of SST ensemble spread: EAC

AOM2-01: 29/3/2017 EnKF/OFAM3: 28/3/2017

- EnKF/AOM2-01 ocean/sea-ice forecasting system is being developed at BoM and progresses towards maturity
- The system is 10+ time more expensive computationally than EnKF/OFAM3
- Based on initial 30-cycle run, the performance is quite good, particularly for subsurface T and S
- Similarity between the reconstructed velocity fields and SST ensemble spread fields brings confidence in the two EnKF DA systems

- EnKF/AOM2-01 ocean/sea-ice forecasting system is being developed at BoM and progresses towards maturity
- The system is 10+ time more expensive computationally than EnKF/OFAM3
- Based on initial 30-cycle run, the performance is quite good, particularly for subsurface T and S
- Similarity between the reconstructed velocity fields and SST ensemble spread fields brings confidence in the two EnKF DA systems

- EnKF/AOM2-01 ocean/sea-ice forecasting system is being developed at BoM and progresses towards maturity
- The system is 10+ time more expensive computationally than EnKF/OFAM3
- Based on initial 30-cycle run, the performance is quite good, particularly for subsurface T and S
- Similarity between the reconstructed velocity fields and SST ensemble spread fields brings confidence in the two EnKF DA systems

- EnKF/AOM2-01 ocean/sea-ice forecasting system is being developed at BoM and progresses towards maturity
- The system is 10+ time more expensive computationally than EnKF/OFAM3
- Based on initial 30-cycle run, the performance is quite good, particularly for subsurface T and S
- Similarity between the reconstructed velocity fields and SST ensemble spread fields brings confidence in the two EnKF DA systems

References

- Kiss, A. E., A. M. Hogg, N. Hannah, et al., 2020: ACCESS-OM2 v1.0: a global ocean-sea ice model at three resolutions. Geosci. Model Dev., 13, 401-442.
- Oke, P., D. Griffin, A. Schiller, et al., 2013: Evaluation of a near-global eddy-resolving ocean model. *Geosci. Model Dev.*, **6**, 591–615.
- Sakov, P., 2014: EnKF-C user guide. CoRR, abs/1410.1233. URL http://arxiv.org/abs/1410.1233
- Sakov, P., F. Counillon, L. Bertino, et al., 2012: TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science, 8, 633-656.