



# THE SWOT MISSION: OPPORTUNITIES AND CHALLENGES

SHANE KEATING, UNSW SYDNEY BOM R&D WORKSHOP, 24 NOVEMBER 2020



- Joint NASA/CNES project scheduled for launch March 2022
  - Wide-swath radar interferometry + nadir altimeter
  - 2D maps of water elevation over 120 km swath
  - 10 times the resolution of current generation altimeters
  - Australian government investment of \$2.3M through IMOS/UTAS/CSIRO support for cal/val.
- Scientific objectives:
  - Monitor (terrestrial) surface water for the first time
  - Observe ocean mesoscales and submesoscales > 15 km
  - Coastal and high-latitude tides and internal tides
- Technological objective:
  - Set a new standard for future altimetry missions



Credit: NASA JPL



Credit: NASA JPL



- Nominal launch date: March 2022 (SpaceX Falcon 9 rocket)
- First 3 months (~Apr-Jun 2022): instrument checkout
- Second 3 months (~Jul-Sep 2022): 1-day repeat fast-sampling phase over limited groundtrack
  - Ideal for studies of rapidly evolving small mesoscales, submesoscales, and internal tides/waves
- 3-year science orbit (~Nov 2022-Nov 2025): 21-day repeat orbit with full global coverage
  - 2km resolution SSH + corrections + wind/waves (3-4 Gb/day)
- Future SAR interferometry missions (2025+): Guanlan, WiSA

# OPPORTUNITIES FOR OPERATIONAL OCEANOGRAPHY

- Fully resolve mesoscale eddies in the open ocean
- Coastal and shelf dynamics, marginal seas, rivers/estuaries
- Ubiquitous small mesoscale and submesoscale ocean processes







Sea spirals (~5 km)

Frontal eddies (~40 km)

Pollutant dispersal

# CHALLENGES FOR OPERATIONAL OCEANOGRAPHY

- Observational error varies across swath, depends on seastate
- Estimating currents from SWOT SSH depends on separation of tides and internal tides from geostrophic currents
- Mismatch between spatial and temporal sampling scales
- Deriving vertical velocities and surface vorticities: a "Grand Challenge for ocean remote sensing"





### **AUSWOT WORKING GROUP**

- Australian Surface Water Ocean Topography (AUSWOT) working group: <a href="www.auswot.org">www.auswot.org</a>
- Consortium of researchers and stakeholders around Australia
- Goals:
  - Support the SWOT mission and Science Team
  - National/regional coordination of SWOT data products
  - Develop national capacity in wide-swath altimetry
  - Leverage SWOT for applications relevant to AUS community



## **SWOT SCIENCE TEAM**



### **SWOT SCIENCE TEAM**



Internal waves on the NW shelf (Keating)



Smaller scales of Southern Ocean Dynamics (Legresy) Near-real time delivery and applications (Cahill)









Synergistic field campaigns during fast sampling phase



SWOT validation from Bass Strait (Watson)

## **AUSWOT WORKING GROUP**



Consultation paper available at https://auswot.org/activities/

## SUPPLEMENTARY MATERIAL

- Chris Watson (UTas) and Benoit Legresy (CSIRO)
- SWOT calibration and validation
- \$2.3M support through IMOS:
  - Bass Strait altimetry cal/val site
  - SOFS mooring (Southern Ocean)
  - Yongala NRS (Great Barrier Reef)











- Benoit Legresy, Steve Rintoul (CSIRO), Helen Phillips, Max Nikurashin, Nathan Bindoff (IMAS)
- Small-scale dynamics in ACC and standing meander south of Tasmania
- R/V Investigator cruises 2018 and 2022

Smaller scales of Southern Ocean Dynamics









- Shane Keating (UNSW), Nicole Jones, Matt Rayson, Gregory Ivey (UWA), Callum Shakespeare (ANU)
- Understanding and predicting internal gravity waves and interaction with background flow
- \$750k supported from ARC Discovery scheme 2021
  - Existing mooring array in EAC off Brisbane
  - WA-IMOS to deploy mooring in Browse Basin











- Madeleine Cahill, David Griffin, Chris Chapman, Bernadette Sloyan (CSIRO)
- Near-real time delivery and applications
- Geostrophic velocities to be validation against highfrequency radar sites around Australia.

Near-real time delivery and applications









- 1-day repeat orbit over limited region for first 3 months (~Jul-Sep 2022)
- Twice-daily observations at cross-over points
- "Adopt a cross-over" campaign: early access to SWOT data products

- Ryan Lowe, Jeff Hansen, Nicole Jones, Mark Buckley (UWA)
  - Observing and modeling coastal hydrodynamics and surface waves in Albany region
- Mark Hemer and Salman Khan (CSIRO)
  - SAR directional surface wave observations in wave-current interaction case studies









- Daily flyover of Burdekin river outflow
- Submesoscale current/river plume dynamics
- Davies reef weather station (AIMS)
- Sediment transport onto reef

Reef dynamics and river outflow



- Daily flyover of Casey and Mawson Station
- Study waves and small-scale features in marginal ice zone (MIZ)
- Complement Arctic campaign (Ron Kwok, JPL) with summer sea ice observations

Seaice/ocean interactions in the MIZ



# OPPORTUNITIES FOR AUSTRALIAN HYDROLOGY

