NWP in 20307

Tim Palmer
Department of Physics

University of Oxford

https://arxiv.org/abs/2007.04830



Why Bother?

Kerala 2018 (Partha Mukhopadhyay)




GLOBAL
COMMISSION ON #AdaptOurWorld
ADAPTATION

ADAPT NOW: A GLOBAL CALL FOR

LEADERSHIP ON CLIMATE RESILIENCE

FA[IIASRE  Benefits and Costs of lllustrative Investments in Adaptation

Py
ad

Benefit-Cost Ratio Net Benefits
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Strengthening early warning systems | — $0.1T
Making new infrastructure resilient _| $4.0T

Improving dryland agriculture _
crop production il | $0.7T
Protecting mangroves |— \ $1.0T
Making water resources
management more resilient — $1.47

Total Net Benefits $71T

Note: This graph is meant to illustrate the broad economic case for investment in a range of adaptation approaches. The net benefits illustrate the approximate
global net benefits to be gained by 2030 from an illustrative investment of $1.8 trillion in five areas (the total does not equal the sum of the rows due to rounding).
Actual returns depend on many factors, such as economic growth and demand, policy context, institutional capacities, and condition of assets. Also, these
investments neither address all that may be needed within sectors (for example, adaptation in the agricultural sector will consist of much more than dryland crop
production) nor include all sectors (as health, education, and industry sectors are not included). Due to data and methodological limitations, this graph does not
imply full comparability of investments across sectors or countries.

Source: World Resources Institute.
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News & views

Climate change

Short-term testsfor
long-term estimates

Tim Palmer

Six-hour weather forecasts have been used to validate
estimates of climate change hundreds of years from now. Such
tests have great potential — but only if our weather-forecasting
and climate-prediction systems are unified.

How sensitive Is climate to atmospheric
carbon dioxide levels? For a doubling of CO,
concentration from pre-industrial levels, some
models predict an alarming long-term warm-
Ing of more than 5 °C. But are these estimates
bellevable? Writing in the Journal of Advances
inModeling Earth Systems, Williams et al.' have
tested some of the revisions that have been
made toone such model by assessing its accu-
racy for very short-term weather forecasts.
The results are not reassuring — they support
the estimates.

There Is little doubt, at least among those
who understand the sclence, that climate
change is one of the greatest challenges fac-
Ing humans In the coming decades. However,
the extent towhich unchecked climate change
would prove catastrophic rests on processes
that are poorly understood. Perhaps the most
Important of these concern the way in which
Earth’s hydrological cycle — which Includes
theevaporation, condensationand movement
of water — will react to our warming planet.

One of the key problems Is how clouds
adjust to warming?. If low-level cloud cover
Increases, and high-level cloud decreases,
then clouds will offset the warming effect of
Increased atmospheric CO, concentrations
and thereby act as a negative feedback, or
damper, on climate change, buying us some
breathing space. By contrast, if there Is posi-
tive cloud feedback — thatls, If low-level clouds
decrease with warming and high-level clouds
Increase — then, short of rapid and complete
cessatlon of fossil-fuel use, we might be head-
Ing for disaster.

So what have clouds been doing as global
warming has slowly taken hold? Trends In
global cloud cover can be estimated only from
space-based observations (Fig. 1). However,

over several decades suffer from spurious
artefacts related to changes in satellite orblit,
Instrument calibration and other factors.
These artefacts are particularly large when
estimating globally averaged cloud cover,
currently preventing any reliable estimation
of trends in one direction or the other.

Inlleu of observatlonal evidence, we must
turn to computational models of the climate
system. But there Is a problem. Clouds are on
too small a scale to be represented using the
laws of physics in current climate models.
Instead, they are represented by relatively

crude, computationally cheap bulk formulae
known as parameterizations. These doencode
some baslc Ideas of cloud physics — clouds’
dependence on the ambient temperature,
humidity and vertical air velocity, for exam-
ple — but they are far from belng ab initio
estimates. Hence, the role of clouds In climate
change s cruclal but uncertain®.

The cloud-feedback problem has been
broughtsharply into focus Inrecent monthsas
results have been emerging from the dozens of
climate-change models in an ensemble called
the Coupled Model Intercomparison Project
(CMIP6; see go.nature.com/3garyzc). Projec-
tions of future climate from this global effort
have fed Into the Sixth Assessment Report
of the Intergovernmental Panel on Climate
Change (IPCC), due next year.

Some of the latest-generation models in
CMIP6 now Indicate climate sensitivities
exceeding 5 °C (refs 5-7). Here, climate sen-
sitivity refers to the global warming after
climate has equilibrated to a doubling of CO,
concentrationrelative to pre-industrial levels,
an equilibrium that might take a few hundred
yearsto lish®. Th Itivity valuesare
outside the range of those produced by the
CMIPS ensemble, which fed into the previous
IPCC Assessment Report® in 2013. They seem
to have arisen largely because of revisions
to how cloud microphysics Is represented,

Figure1| Cloudy skies, viewed from space. How clouds will adjust to a warming climate s difficult to
predict, but Williams et al.' have used short-term weather forecasts to assess whether recent revisions to

cloud datasets derived from mult llites
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Craig Bishop’s
guestion to
Andy Brown.




To improve NWP, do we need more
observations or better models?

A key problem in the medium-range is an inability to assimilate the key

information in observations into the forecast model. (Rodwell, 2013).
This is often a model resolution problem.

* Forecast skill of precip in tropics (where circulations are convectively
forced) is systematically worse than in extratropics.

* John Le Marshall’s question to Andy Brown.

* |In the late medium-range, models generate systematic errors due to
systematic deficiencies in the heuristic formulae (aka parametrisations)
used to represent unresolved processes.



High-resolution (1-3km) global
ensembles

* Better representation of extremes
 Better able to assimilate observations

* No need for some key parametrisations — smaller systematic errors



Deterministic prediction within
“the limit of deterministic
predictability” makes no
scientific sense at all!




High-resolution (1-3km) global ensembles — a
computational challenge even by 2030.

Use of Al for parametrisations (in nonlinear model and in tangent linear
model)

Use of reduced-precision (single and maybe even half-precision)
modelling

Domain-specific languages.



Neural networks for efficient Gravity
Wave Drag parameterization

* Emulate existing Non-Orographic Gravity Wave Drag (NOGWD) scheme from ECMWF’s IFS model.

* Use fully connected neural network trained on 1-year of data.

* Inputs: pressure, velocity & temperature profiles
Outputs: velocity tendency profiles.

* Neural network performs well when coupled back into IFS, offline speed testing finds NN scheme is 2x

faster.
Existing NOGWD scheme Neural network NOGWD scheme
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Year long simulations of IFS using existing or NN gravity wave drag schemes. Forced with observed SST. Plotting equatorial zonal jet to show
the descent of the Quasi-Biennial Oscillation. The previous GWD scheme (not plotted) failed to produce this descent.
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More reliable forecasts with
less precise computations: a
fast-track route to
cloud-resolved weather and
climate simulators?

T.N. Palmer
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Parks Road, Oxford 0X13PU, UK
Oxford Martin Programme on Modelling and Predicting Climate

This paper sets out a new methodological approach
to solving the equations for simulating and predicting
weather and climate. In this approach, the convent-
ionally hard boundary between the dynamical core
and the sub-grid parametrizations is blurred. This
approach is motivated by the relatively shallow
power-law spectrum for atmospheric energy on
scales of hundreds of kilometres and less. It is first
argued that, because of this, the closure schemes for
weather and climate simulators should be based on
stochastic-dynamic systems rather than deterministic
formulae. Second, as high-wavenumber elements
of the dynamical core will necessarily inherit this
stochasticity during time integration, it is argued
that the dynamical core will be significantly over-
engineered if all computations, regardless of scale,

If the parametrization
problem is inherently
stochastic, why are we
running our model with 64-bit
precision? Makes no sense!

With thanks to Mat Chantry, Peter Dueben, Sam Hatfield, Adam Paxton, Leo Saffin.




More accuracy with less precision

Single-precision in the atmosphere (status)
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Simon Lang and colleagues at ECMWF




Scale-selective precision (1)

High-precision for large scales, low-precision for small scales?
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Towards
Half
Precision

Scale-selective precision (2)

Hurricane Irma core position

Average precision of “scale-selective” (across all wavenumbers): 8.6 significand
bits

C ECMWEF curopean centre For MEDIUM-RANGE WEATHER FORECASTS Sam Hatfield

Mat Chantry, Peter
Dueben, Sam
Hatfield




Half-precision on climate timescales.

Total Precipitation Annual Mean (mm / day

Control

* An analysis of reduced
precision SPEEDY.

Double precision

* A coarse resolution

(3.75° % 3.75°)
atmosphere only,
primitive equation
model (prescribed
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Adam Paxton, Leo Saffin, Mat Chantry




1. Fugaku Supercomputer
at 16 bit = Exascale.

(and nothing is lost from running
at low precision)

ARM chips support mixed precision in Fortran



4-bit 1-bit
deterministic deterministic

85% 85%
70% 70%
55% 55%
45%

Deterministic
rounding

1-bit
stochastic

Stochastic
rounding

Noise can be a positive resource!




Downscaling and Calibration

* Necessary even with a 1km model

* How to do this:
* LAMs
o Al



German
+ C International Federation Red
of Red Cross and Red Crescent Societies Cross

Forecast-based Financing
A new era for the humanitarian system

Needs fully reliable probabilistic triggers for regionally specific
extreme events in the medium range.



Advantage of LAMSs

* Based on the laws of physics.

* Terrific results from Charmaine Franklin (yesterday)

Disadvantages of LAMSs

* We will need to run them over full medium range if they are to usefully
guide e.g. F-b-F.

* Need ensembles (e.g. for probabilistic triggers).

* Need significant reforecasts in order that forecast data can be calibrated
and fed into impact/application models.

* Few if any NMSs have the resources to do this adequately: none in the
developing world where extreme weather is most severe.



Advantages of Al

* National-specific Al schemes can be developed at NMSs using
national observational datasets for training.

* A key role for maintaining both data and human resources at the
national level.

e Easily run over long forecast ranges.

Disadvantages of Al

* This is an untested area.
Do we have adequate training data?

e Can they cope with record-breaking extremes, not seen in the
training data?
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Example of Al downscaling scheme

Stochastic Super-Resolution for Downscaling
Time-Evolving Atmospheric Fields with a
Generative Adversarial Network

Jussi Leinonen, Daniele Nerini and Alexis Berne

Abstract—Generative adversarial networks (GANSs) have been
recently adopted for super-resolution, an application closely
related to what is referred to as “downscaling” in the atmospheric
sciences. The ability of conditional GANSs to generate an ensemble
of solutions for a given input lends itself naturally to stochastic
downscaling, but the stochastic nature of GANs is not usually
considered in super-resolution applications. Here, we introduce
a recurrent, stochastic super-resolution GAN that can generate
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IEEE TRANSACTIONS IN GEOSCIENCE AND REMOTE SENSING, 2020

Like many other image processing applications, super-
resolution has benefited from the introduction of the tech-
niques of deep learning and particularly convolutional neural
networks (CNNs). Early attempts at super-resolution using
deep CNNs focused on finding image quality metrics that
could serve as loss functions that produce sharp images [S5]-
[7]. More recently, generative adversarial networks (GANs)

2017-07-24 10:00 UTC

Real

Downsampled

Reconstructed

Fig. 7. An example of the results of the GAN applied to full frames of the June—August 2017 data from the MCH-RZC dataset, showing the situation of July
24 at 10:00 UTC. The gray areas mask the points unavailable due to lack of radar coverage. The borders of Switzerland are shown in the middle in order
to provide spatial context. Left: the original frame. Middle: the downsampled version fed to the generator. Right: The high-resolution frame reconstructed by

the GAN.



Deep-learning based down-scaling of summer monsoon rainfall
data over Indian region

Bipin Kumar#*, Rajib Chattopadhyay, Manmeet Singh, Niraj Chaudhari, Karthik Kodari and
Amit Barve

Patch Extraction and Representation|Non-Linear Mapping Reconstruction l
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Fig 2: An overview of SRCNN and DeepSD methods. In the DeepSD, the downscaling is done in
steps rather than a direct 4x or 8x resolution. Also, DeepSD used multivariable inputs.



ecPoint post-processing

c/o Tim Hewson, ECMWF
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* Calibration is non-local, it needs just 1 year of
48h Control forecasts

» Convective and large-scale rain are post-
processed very differently

* All ecPoint forecasts can be easily
decomposed and understood (gives physical
insights)

* Earlier signal
. Higherlprobs
¢ Less Jumpy

1 year of Global Verification for > 50mm / 12h: ROC area

-

“~

N

oaye

Sage

~e—ecPoint-Rainfall
-e—~Raw Ensemble

5

e

||| Level of Useful Skill ?

||| Climatology

Day 1

Day 3

Day 5 Day 7

LeadTime

Day 10

“In two 1-year verification comparisons, with limited area
Convection-resolving ensembles, with and without modern post-processing
ensembles: methods applied, for two relatively mountainous European

regions, ecPoint performed as well or better”



Data Assimilation

* Blending reduced precision and Al

* Tangent linear / adjoint of of Neural Net based parametrization is
simple

* Allows precise adjoint modelling with full physics at low precision

e Can we assimilate observations into a model which includes
stochastic Al-downscaled software?



NWP for 2030

* Need to improve early warning systems on timescale of a week or more

so that precautionary actions can be taken. Part of improving climate
resilience.

* Global ensembles vital, but we must develop convective-permitting
models.

* We have to develop much more efficient algorithms to enable better
use to be made of exascale computing — Al and stochastically rounded

low precision, enormous potential to improve data assimilation
schemes.

 Downscaling and calibration are going to be vital tools. Al holds more
promise than LAMs.

* Forecasters role much more in interacting with users to find the most
appropriate probabilistic products.



