References and data sources

General climate information

State of the Climate 2010

State of the Climate 2012

State of the Climate 2014

State of the Climate 2016

The Global Carbon Project
http://www.globalcarbonproject.org/

Fourth US National Climate Assessment, Nov 2018: https://www.globalchange.gov/nca4

Key data sources

National Snow and Ice Data Centre: https://nsidc.org/

Temperature

Fire weather

Rainfall

Timbal, B, Ekström, M, Fiddes, S, Grose, M, Kirono, D, Lim, E, 2016. Climate change science and Victoria, Bureau Research Report, no. 14, pp. 92

Heavy rainfall

Compound events

Streamflow

Fiddes, S & Timbal, B 2016, ‘Assessment and reconstruction of catchment streamflow trends and variability in response to rainfall across Victoria, Australia’, Climate Research, vol. 67, pp. 43–60.

Tropical cyclones

Callaghan, J & Power, SB 2011, ‘Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century’, Climate Dynamics, vol. 37, no. 3, pp. 647–662.

Snow

Ocean temperature and heat content

GO-SHIP: The global ocean ship-based hydrographic investigation program http://www.go-ship.org

Miles, E, Spillman, C, Jones, DA, Walland, DJ 2016, ‘This summer’s sea temperatures were the hottest on record for Australia: here’s why’, The Conversation, April 5, https://theconversation.com/this-summers-sea-temperatures-were-the-hottest-on-record-for-australia-heres-why-56906.

Tollefson, J. (2018). Climate change has doubled the frequency of ocean heatwaves. *Nature, 10*, 16–18. https://doi.org/10.1038/d41586-018-05978-1

Wernberg, T, Roemmich, D, Monselesan, D, Church, J & Gilson, J (2018). Climate change has doubled the frequency of ocean heatwaves. *Nature Climate Change, 3*, No. 1, pp. 78–82.

Wijffels, S, Roemmich, D, Monselesan, D, Church, J & Gilson, J (2016). 'Ocean temperatures chronicle the ongoing warming of Earth', *Nature Climate Change, 6*, No. 2, pp. 116–118.

Great Barrier Reef

Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J., Harrison, P., ... Walshe, T. (2017). New interventions are needed to save coral reefs. *Nature Ecology and Evolution*. https://doi.org/10.1038/s41559-017-0313-5

Sea level

Ocean acidification

Bintanja, R., van Oldenborgh, GJ, Drijfhout, SS, Wouters, B & Katsman, CA 2013, ‘Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion’, *Nature Geoscience*, vol. 6, no. 5, pp. 376–379.

Greenhouse gases

Langenfelds, RL, Steele, LP, Gregory, RL, Krummel, PB, Spencer, DA & Howden, RT 2014, Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 45-49.

Future climate

Dowdy, A et al. 2015, East Coast Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Ekstrom, M et al. 2015, Central Slopes Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Grose, M et al. 2015, Southern Slopes Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Hope, P et al. 2015, Southern and South Western Flatlands Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

McInnes, K et al. 2015, Wet Tropics Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Moise, A et al. 2015, Monsoonal North Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Timbal, B et al. 2015, Murray Basin Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Watterson, I. et al. 2015, Rangelands Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds. Ekstrom, M. et al., CSIRO and Bureau of Meteorology, Australia

Climate change scenarios for the Australian region. (1992).

Climate Change, the IPCC Scientific Assessment. (1990).

How do we know which baseline period to use?

The World Meteorological Organization's standard reference period, for use in monitoring long-term climate change, is the 30-year period 1961–1990. State of the Climate 2018 uses that baseline period for long-term averages where suitable data are available. It normally uses the full period of available nationwide data for extremes and frequency distributions. Records from the monitoring of the ocean, atmosphere and land can vary in length, influencing the baselines used.

National records across Australia are available for rainfall from 1900, and for monthly temperature, from consistent thermometer screens, from 1910. Digitised daily temperature records become widespread from 1950 onwards, and hence a period beginning in 1951 is used as the initial baseline for daily temperature distributions.

The measurement of atmospheric constituents such as CO\(_2\) began in Mauna Loa, Hawaii in 1958, and clean air baseline measurements started in the mid-1970s at Cape Grim, Tasmania.

High-quality satellite altimeter data has been available for monitoring sea level of the oceans surrounding Australia since 1993. Sea level measurements can also be taken from tide gauges along the Australian coastline. Archives of in situ sea surface temperature measurements extend back more than 160 years, with increasing spatial coverage in recent decades. The number of ocean temperature profile measurements in the upper 700 m have increased since the 1950s. For depths below 2000 m, ocean temperature profiles are largely measured by ship-based surveys (GO-SHIP) since the 1970s. In 2006, the Argo profiling float array achieved near-global coverage for the upper 2000 m.

Satellite measurements started in the late 1970s and provide information about sea-ice, oceans and land.

The concept of pre-industrial as a baseline period for comparison with recent trends is used in the report. This baseline refers to the climate immediately before the acceleration of human influence such as emissions of greenhouse gases from the 1700s. There is no one official pre-industrial baseline, and observations are very sparse before the 20th Century so slightly different baselines are used for different applications. Read more in this article.

For State of the Climate 2018, we have specified in the text, or associated figures, which specific period is being used. Projections used in this report are from www.climatechangeinaustralia.gov.au and are generated by global climate models using different greenhouse gas and aerosol emissions scenarios. These projections are generally compared to a 1986–2005 baseline.