Northern Aust Seasonal Rainfall Outlook: probabilities for February to April 2009, issued 22nd January 2009

Mixed odds for late summer to mid-autumn rainfall

The northern region outlook for total late summer to mid-autumn (February to April) rainfall shows mixed odds for exceeding the seasonal median. There is a shift in the odds to lower than median rainfall over parts of central and northern Queensland, while there is a slight shift in the odds favouring above median rainfall over the northern NT/WA border region.

The cooling trend in the Indian Ocean in late 2008 is the dominant factor in this rainfall outlook.

probability of exceeding median rainfall - click on the map for a larger version of the map

The chance of exceeding median rainfall over much of central and northern Queensland are between 20 and 40%, which means that these areas have a 60 to 80% chance of being drier than normal. This means that for every ten years with similar ocean patterns, about six to eight years are expected to be drier than average in this region, while about two to four years are expected to be wetter.

In contrast, the odds of exceeding median rainfall over the northern NT/WA border region is about 60%, which means this area has a 40% chance of being drier than normal.

Outlook confidence is related to how consistently the Pacific and Indian Oceans affect Australian rainfall. During the February to April period, history shows the effect to be moderately consistent through the central and northern parts of both Queensland and the NT. Elsewhere the effect is only weakly or very weakly consistent (see background information).

The central and eastern equatorial Pacific Ocean cooled further during December. This brings the Pacific Ocean into line with atmospheric indicators, a number of which have been approaching La Niña levels since October 2008. However, most current model outlooks, and a build-up of warmer sub-surface water in the western equatorial Pacific, suggest that the cooler conditions in the Pacific may not persist beyond summer 2009. The most likely scenario is for the central and eastern Pacific to warm over the coming months and hence remain neutral. The SOI remains positive at approximately +13 for the 30 days ending 19 January. For routine updates and comprehensive discussion on any developments please see the ENSO Wrap-Up.

 

Click on the map above for a larger version of the map. Use the reload/refresh button to ensure the latest forecast map is displayed. More detailed forecast maps, including the probabilities of seasonal rainfall exceeding given totals, can be found here.

 

More information on this outlook is available by contacting the Bureau's Climate Services sections in Queensland and the Northern Territory at the following numbers:

Brisbane -(07) 3239 8700
Darwin -(08) 8920 3813
 

THE NEXT ISSUE OF THE SEASONAL OUTLOOK IS EXPECTED BY 20th February 2009

Corresponding temperature outlook

December 2008 rainfall in historical perspective

October to December 2008 rainfall in historical perspective

 

Background Information

  • The Bureau's seasonal outlooks are general statements about the probability or risk of wetter or drier than average weather over a three-month period. The outlooks are based on the statistics of chance (the odds) taken from Australian rainfall/temperatures and sea surface temperature records for the tropical Pacific and Indian Oceans. They are not, however, categorical predictions about future rainfall, and they are not about rainfall within individual months of the three-month outlook period. The temperature outlooks are for the average maximum and minimum temperatures for the entire three-month outlook period. Information about whether individual days or weeks may be unusually hot or cold, is unavailable.

  • This outlook is a summary. More detail is available from the contact people or from SILO (www.bom.gov.au/silo/products/SClimate.shtml).

  • Probability outlooks should not be used as if they were categorical forecasts. More on probabilities is contained in the booklet The Seasonal Climate Outlook - What it is and how to use it, available from the National Climate Centre. These outlooks should be used as a tool in risk management and decision making. The benefits accrue from long-term use, say over 10 years. At any given time, the probabilities may seem inaccurate, but taken over several years, the advantages of taking account of the risks should outweigh the disadvantages. For more information on the use of probabilities, farmers could contact their local departments of agriculture or primary industry.

  • Model Consistency and Outlook Confidence: Strong consistency means that tests of the model on historical data show a high correlation between the most likely outlook category (above/below median) and the verifying observation (above/below median). In this situation relatively high confidence can be placed in the outlook probabilities. Low consistency means the historical relationship, and therefore outlook confidence, is weak. In the places and seasons where the outlooks are most skilful, the category of the eventual outcome (above or below median) is consistent with the category favoured in the outlook about 75% of the time. In the least skilful areas, the outlooks perform no better than random chance or guessing. The rainfall outlooks perform best in eastern and northern Australia between July and January, but are less useful in autumn and in the west of the continent. The skill at predicting seasonal maximum temperature peaks in early winter and drops off marginally during the second half of the year. The lowest point in skill occurs in early autumn. The skill at predicting seasonal minimum temperature peaks in late autumn and again in mid-spring. There are also two distinct periods when the skill is lowest - namely late summer and mid-winter. However, it must always be remembered that the outlooks are statements of chance or risk. For example, if you were told there was a 50:50 chance of a horse winning a race but it ran second, the original assessment of a 50:50 chance could still have been correct.

  • The Southern Oscillation Index (SOI) is calculated using the barometric pressure difference between Tahiti and Darwin. The SOI is one indicator of the stage of El Niño or La Niña events in the tropical Pacific Ocean. It is best considered in conjunction with sea-surface temperatures, which form the basis of the outlooks. A moderate to strongly negative SOI (persistently below –10) is usually characteristic of El Niño, which is often associated with below average rainfall over eastern Australia, and a weaker than normal monsoon in the north. A moderate to strongly positive SOI (persistently above +10) is usually characteristic of La Niña, which is often associated with above average rainfall over parts of tropical and eastern Australia, and an earlier than normal start to the northern monsoon season. The Australian impacts of 23 El Niño events since 1900 are summarized on the Bureau's web site (www.bom.gov.au/climate/enso/).