Southeastern Aust Seasonal Rainfall Outlook: probabilities for July to September 2009, issued 23rd June 2009

A drier season favoured in parts of SA and Victoria

For southeastern Australia, the outlook for total rainfall over the September quarter (July to September) indicates that in relatively small parts of SA and Victoria, there are moderate shifts in the odds favouring a drier than normal season. On the whole though, the chances of above normal falls are about the same as the chances of below normal.

The pattern of seasonal rainfall odds across southeast Australia is a result of recent warm conditions in the Indian Ocean and an increasing level of warmth in the Pacific. The influences from these two oceans counteract each other in northern NSW: the Indian Ocean pattern promotes wetter conditions while the Pacific biases the climate towards a drier than normal season. Further south, the two patterns tend to reinforce each other.

probability of exceeding median rainfall - click on the map for a larger version of the map

For the July to September period, the chance of exceeding median rainfall is between 40 and 50% over most of the southeastern region (see map). The chances drop to the 35 and 40% range in a few areas in central and southeast South Australia and the far southwest of Victoria, indicating an increased risk of dry conditions. For these small regions this means that for every ten years with ocean patterns like the current, about four years would be expected to be wetter than average during the September quarter, with about six being drier.

New: An expanded set of seasonal rainfall outlook maps and tables, including the probabilities of seasonal rainfall exceeding given totals (e.g. 200 mm), is available on the "Water and the Land" (WATL) part of the Bureau's website.

Outlook confidence is related to how consistently the Pacific and Indian Oceans affect Australian rainfall. During July to September, history shows that the effect is only weakly to very weakly consistent in areas of southeastern and far western SA, Victoria, western NSW and most of Tasmania (see background information). The effect is moderately consistent across the remainder of NSW and SA. The area of very weak consistency in southeast NSW stretches across the border to include the southeastern part of Victoria. In these areas where outlook confidence is not high, caution should be used when interpreting these outlooks.

Changes in the climate patterns across the Pacific and the latest outputs from computer models point to an emerging El Niño event. A media release regarding this was issued on 3rd June. The SOI is approximately −10 for the 30 days ending 20 June. For routine updates and comprehensive discussion on any developments please see the ENSO Wrap-Up.


Click on the map above for a larger version of the map. Use the reload/refresh button to ensure the latest forecast map is displayed. More detailed forecast maps, including the probabilities of seasonal rainfall exceeding given totals, can be found here.


More information on this outlook is available Monday to Friday from 9.00am to 5.00pm local time by contacting the Bureau's Climate Services sections in Queensland, NSW, SA, Victoria and Tasmania at the following numbers:

Sydney -(02) 9296 1555
Adelaide -(08) 8366 2664
Melbourne -(03) 9669 4949
Hobart -(03) 6221 2043


Corresponding temperature outlook

May 2009 rainfall in historical perspective

March to May 2009 rainfall in historical perspective


Background Information

  • The Bureau's seasonal outlooks are general statements about the probability or risk of wetter or drier than average weather over a three-month period. The outlooks are based on the statistics of chance (the odds) taken from Australian rainfall/temperatures and sea surface temperature records for the tropical Pacific and Indian Oceans. They are not, however, categorical predictions about future rainfall, and they are not about rainfall within individual months of the three-month outlook period. The temperature outlooks are for the average maximum and minimum temperatures for the entire three-month outlook period. Information about whether individual days or weeks may be unusually hot or cold, is unavailable.

  • This outlook is a summary. More detail is available from the contact people or from SILO (Seasonal Climate Outlook Products).

  • Probability outlooks should not be used as if they were categorical forecasts. More on probabilities is contained in the booklet The Seasonal Climate Outlook - What it is and how to use it, available from the National Climate Centre. These outlooks should be used as a tool in risk management and decision making. The benefits accrue from long-term use, say over 10 years. At any given time, the probabilities may seem inaccurate, but taken over several years, the advantages of taking account of the risks should outweigh the disadvantages. For more information on the use of probabilities, farmers could contact their local departments of agriculture or primary industry.

  • Model Consistency and Outlook Confidence: Strong consistency means that tests of the model on historical data show a high correlation between the most likely outlook category (above/below median) and the verifying observation (above/below median). In this situation relatively high confidence can be placed in the outlook probabilities. Low consistency means the historical relationship, and therefore outlook confidence, is weak. In the places and seasons where the outlooks are most skilful, the category of the eventual outcome (above or below median) is consistent with the category favoured in the outlook about 75% of the time. In the least skilful areas, the outlooks perform no better than random chance or guessing. The rainfall outlooks perform best in eastern and northern Australia between July and January, but are less useful in autumn and in the west of the continent. The skill at predicting seasonal maximum temperature peaks in early winter and drops off marginally during the second half of the year. The lowest point in skill occurs in early autumn. The skill at predicting seasonal minimum temperature peaks in late autumn and again in mid-spring. There are also two distinct periods when the skill is lowest - namely late summer and mid-winter. However, it must always be remembered that the outlooks are statements of chance or risk. For example, if you were told there was a 50:50 chance of a horse winning a race but it ran second, the original assessment of a 50:50 chance could still have been correct.

  • The Southern Oscillation Index (SOI) is calculated using the barometric pressure difference between Tahiti and Darwin. The SOI is one indicator of the stage of El Niño or La Niña events in the tropical Pacific Ocean. It is best considered in conjunction with sea-surface temperatures, which form the basis of the outlooks. A moderate to strongly negative SOI (persistently below –10) is usually characteristic of El Niño, which is often associated with below average rainfall over eastern Australia, and a weaker than normal monsoon in the north. A moderate to strongly positive SOI (persistently above +10) is usually characteristic of La Niña, which is often associated with above average rainfall over parts of tropical and eastern Australia, and an earlier than normal start to the northern monsoon season. The Australian impacts of 25 El Niño events since 1900 are summarized on the Bureau's web site (El Niño - Detailed Australian Analysis).