Murray–Darling Basin
30.3 Runoff harvesting into off-channel water store
Supporting information
The volumetric value for the line item for the 2011–12 year was 1,320,947 ML. The line item includes collection of runoff into off-channel water storages including local catchment runoff into off-channel water storages within the Murray–Darling Basin (MDB) region. The following table presents breakdown information for the volumetric value on a surface water resource plan area basis.
Water resource plan area | Sustainable diversion limit area | State/Territory | Volume (ML) for the 2011–12 year | |
Code | Name | |||
SW19 Warrego–Paroo–Nebine | SS29 | Paroo | Qld | 268,185 |
SS28 | Warrego | Qld | ||
SS27 | Nebine | Qld | ||
SW18 Condamine–Balonne | SS26 | Condamine–Balonne | Qld | |
SW17 Moonie | SS25 | Moonie | Qld | |
SW11 Barwon–Darling Watercourse | SS19 | Barwon–Darling Watercourse | NSW | |
SW12 NSW Intersecting Streams | SS17 | NSW Intersecting Streams | NSW | |
SW16 Qld Border Rivers | SS24 | Qld Border Rivers | Qld | 100,793 |
SW15 NSW Border Rivers | SS23 | NSW Border Rivers | NSW | |
SW14 Gwydir | SS22 | Gwydir | NSW | 98,936 |
SW13 Namoi | SS21 | Namoi | NSW | 89,669 |
SW10 Macquarie–Castlereagh | SS20 | Macquarie–Castlereagh | NSW | 185,387 |
Northern Basin | 742,969 | |||
SW9 Lachlan | SS16 | Lachlan | NSW | 164,636 |
SW8 Murrumbidgee | SS15 | Murrumbidgee NSW | NSW | 158,636 |
SW1 ACT | SS1 | ACT | ACT | |
SW7 NSW Murray and Lower Darling | SS18 | Lower Darling | NSW | 83,005 |
SS14 | NSW Murray | NSW | ||
SW2 Vic. Murray | SS3 | Kiewa | Vic. | |
SS2 | Vic. Murray | Vic. | ||
SW4 Wimmera–Mallee | SS9 | Wimmera–Mallee | Vic. | |
SW5 SA Murray | SS11 | SA Murray | SA | |
SS10 | SA Non-prescribed areas | SA | ||
SW3 Northern Victoria | SS4 | Ovens | Vic. | 23,748 |
SS5 | Broken | Vic. | 79,334 | |
SS6 | Goulburn | Vic. | ||
SS7 | Campaspe | Vic. | 20,774 | |
SS8 | Loddon | Vic. | 34,351 | |
SW6 Eastern Mount Lofty Ranges | SS13 | Eastern Mount Lofty Ranges | SA | 13,493 |
SS12 | Marne Saunders | SA | ||
Southern Basin | 577,978 | |||
Whole MDB region | 1,320,947 |
Quantification approach
Data source
Provided by
Method
Rainfall runoff harvesting to off-channel water storages was estimated using the Australian water resources assessment system landscape (AWRA-L) version 2.0.0 model and a water balance tool based on a Fortran code.
Using climate grid data for the MDB region (including precipitation, temperature and solar radiation data), AWRA-L (Van Dijk 2010) was used to estimate the runoff depth at each grid-point within the region.
The MDB was divided into 105 regions for the purpose of modelling the off-channel water store. The off-channel water store consisted of storages filled primarily by local catchment runoff. These were determined from waterbody mapping conducted by Geoscience Australia as those which:
- are not named storages (assuming that any storage with a name is unlikely to be a off-channel water storage)
- are above 600 m in elevation
- are below 600 m in elevation in areas that receive greater than 400 mm per annum in precipitation and are not within 50 m of a major or perennial stream.
The above rules attempt to divide storages into those that are likely to be filled primarily by local catchment runoff and those which are filled by abstraction from surface water, groundwater or floodplain harvesting. The catchment of each individual storage was determined via analysis of the 9 arc-second DEM.
The average runoff depth across the MDB sub-regions was determined as the weighted mean of runoff occurring from the relevant grid points within the region boundary. Points were weighted upon the area they represented within the MDB landscape to remove edge effects (where the area represented is not wholly within the MDB region) and the effect of changing area represented with changing latitude. The average runoff depth was converted to a volume by multiplying depth by the total area and was used as an input into the water balance tool based on the Fortran code.
Assumptions, limitations, caveats and approximations
- The gridded climate input data are subject to approximations associated with interpolating observation point data to a national grid detailed in Jones et al. (2007).
- The spatial extent of water bodies subject to the assumptions and methods associated with the data provided by the Geoscience Australia.
- The use of a 9 arc-second DEM to determine catchment area may result in storages being assigned a catchment much larger or smaller than the true catchment. In some cases a storage may be assigned the catchment of a stream line hundreds of metres away.
Uncertainty information
The uncertainty estimate was not quantified.
Comparative year
A change made to the calculation method resulted in the restatement of the 2010–11 year volume. The method used to quantify the line item was improved and resulted in a material change in volume.
The respective volumes associated with the change are detailed in the following table.
Segment | 2012 Account volume for the 2010–11 year (ML) | 2011 Account volume for the 2010–11 year (ML) | Difference due to calculation method change (ML) |
Northern Basin | 773,931 | 778,663 | -4,732 |
Southern Basin | 741,628 | 727,822 | 13,806 |
Whole region | 1,515,559 | 1,506,485 | 9,074 |
The volume estimated for the comparison year for the 2012 Account (1,515,559 ML) is higher than the volume reported for the 2011 Account (1,506,485 ML). This was due to a change in modelling methods. The difference between the previously reported volume and the estimate produced for the comparison year can be attributed to the choice of the AWRA-L v2.0.0 model (instead of the previously used AWRA-L v1.0.0) to provide inputs to the water balance tool. The AWRA-L v2.0.0 model is more reliable than previous models in estimating runoff. The difference of 9,074 ML represents a change of 6% of the previously reported value.