Murray–Darling Basin
30.3 Runoff harvesting into off-channel water store
Supporting information
The volumetric value for the line item for the 2012–13 year was 1,045,619 ML. The line item includes collection of runoff into off-channel water storages including local catchment runoff into off-channel water storages within the Murray–Darling Basin (MDB) region. The following table presents breakdown information for the volumetric value on a surface water resource plan area basis.
Water resource plan area |
Sustainable diversion limit area |
State/Territory |
Volume (ML) for the 2012–13 year |
|
Code |
Name |
|||
SW20 Warrego–Paroo–Nebine |
SS29 |
Paroo |
Qld |
207,232 |
SS28 |
Warrego |
Qld |
||
SS27 |
Nebine |
Qld |
||
SW19 Condamine–Balonne |
SS26 |
Condamine–Balonne |
Qld |
|
SW18 Moonie |
SS25 |
Moonie |
Qld |
|
SW12 Barwon–Darling Watercourse |
SS19 |
Barwon–Darling Watercourse |
NSW |
|
SW13 NSW Intersecting Streams |
SS17 |
NSW Intersecting Streams |
NSW |
|
SW17 Qld Border Rivers |
SS24 |
Qld Border Rivers |
Qld |
102,313 |
SW16 NSW Border Rivers |
SS23 |
NSW Border Rivers |
NSW |
|
SW15 Gwydir |
SS22 |
Gwydir |
NSW |
56,140 |
SW14 Namoi |
SS21 |
Namoi |
NSW |
72,249 |
SW11 Macquarie–Castlereagh |
SS20 |
Macquarie–Castlereagh |
NSW |
148,047 |
Sub-total Northern Basin |
585,981 |
|||
SW10 Lachlan |
SS16 |
Lachlan |
NSW |
136,483 |
SW9 Murrumbidgee |
SS15 |
Murrumbidgee NSW |
NSW |
119,825 |
SW1 ACT |
SS1 |
ACT |
ACT |
|
SW8 NSW Murray and Lower Darling |
SS18 |
Lower Darling |
NSW |
68,819 |
SS14 |
NSW Murray |
NSW |
||
SW2 Vic. Murray |
SS3 |
Kiewa |
Vic. |
|
SS2 |
Vic Murray |
Vic. |
||
SW4 Wimmera–Mallee |
SS9 |
Wimmera–Mallee |
Vic. |
|
SW5 SA Murray Region |
SS10 |
SA Non-prescribed areas |
SA |
|
SW6 SA River Murray |
SS11 |
SA Murray |
SA |
|
SW3 Northern Victoria |
SS4 |
Ovens |
Vic. |
22,626 |
SS5 |
Broken |
Vic. |
64,100 |
|
SS6 |
Goulburn |
Vic. |
||
SS7 |
Campaspe |
Vic. |
12,615 |
|
SS8 |
Loddon |
Vic. |
22,824 |
|
SW7 Eastern Mount Lofty Ranges |
SS13 |
Eastern Mount Lofty Ranges |
SA |
12,346 |
SS12 |
Marne Saunders |
SA |
||
Sub-total Southern Basin |
459,638 |
|||
Whole MDB region |
1,045,619 |
Quantification approach
Data source
Provided by
Method
Rainfall runoff harvesting to off-channel water storages was estimated using the Australian water resources assessment system landscape (AWRA-L) version 3.0 model, and the water-balance based farm dam algorithm written by the bureau.
Using climate grid data for the MDB region (including precipitation, temperature, and solar radiation data), AWRA-L (Van Dijk 2010) was used to estimate the runoff depth at each grid-point within the region.
The MDB was divided into 105 regions for the purpose of modelling the off-channel water store. The off-channel water store consisted of storages filled primarily by local catchment runoff. These were determined from waterbody mapping conducted by Geoscience Australia as those which:
- are not named storages (assuming that any storage with a name is unlikely to be a off-channel water storage); and
- are above 600 m in elevation; and/or
- are below 600 m in elevation in areas that receive greater than 400 mm per annum in precipitation and are not within 50 m of a major or perennial stream.
The above rules attempt to divide storages into those that are likely to be filled primarily by local catchment runoff and those which are filled by abstraction from surface water, groundwater or floodplain harvesting. The catchment of each individual storage was determined via analysis of the 9 arc-second DEM.
The average runoff depth across the MDB sub-regions was determined as the weighted mean of runoff occurring from the relevant grid points within the region boundary. Points were weighted upon the area they represented within the MDB landscape to remove edge effects (where the area represented is not wholly within the MDB region) and the effect of changing area represented with changing latitude. The average runoff depth was converted to a volume by multiplying depth by the total area and was used as an input into the farm dam algorithm.
Assumptions, limitations, caveats and approximations
- The gridded climate input data are subject to approximations associated with interpolating observation point data to a national grid detailed in Jones et al. (2007).
- The spatial extent of water bodies subject to the assumptions and methods associated with the data provided by the Geoscience Australia.
- The use of a 9 arc-second DEM to determine catchment area may result in storages being assigned a catchment much larger or smaller than the true catchment. In some cases a storage may be assigned the catchment of a stream line hundreds of metres away.
Uncertainty information
The uncertainty estimate was not quantified.