Tropical monitoring and outlooks
Madden-Julian Oscillation (MJO)
The Madden-Julian Oscillation (MJO) is the major fluctuation in tropical weather on weekly to monthly timescales. The MJO can be characterised as an eastward moving 'pulse' of cloud and rainfall near the equator that typically recurs every 30 to 60 days.
Forecast MJO location and strength
The chart shows the strength and progression of the MJO through 8 different areas along the equator around the globe.
Area 3 is north west of Australia, 4 and 5 are to the north (the Maritime Continent), and 6 is to the north east.
RMM1 and RMM2 are mathematical methods that combine cloud amount and winds at upper and lower levels of the atmosphere to provide a measure of the strength and location of the MJO. When this index is within the centre circle the MJO is considered weak. Outside of this circle the index is stronger and will usually move in an anti-clockwise direction as the MJO moves from west to east.
Tropical atmospheric waves
About tropical atmospheric waves
MJO
The Madden–Julian Oscillation (MJO) is the major fluctuation in tropical weather on weekly to monthly timescales. It can be characterised as an eastward moving pulse or wave of cloud and rainfall near the equator that typically recurs every 30 to 60 days.
Other tropical waves in the atmosphere
In addition to the MJO, other large-scale atmospheric waves also occur in the tropics. The main ones are the convectively-coupled Kelvin wave (KW), equatorial Rossby wave (ER), and mixed Rossby-Gravity wave (MRG). They can provide further insight into the current tropical weather, such as the location and development of tropical cyclones, and what may occur over the coming days to weeks. These waves occur year-round, but typically have a greater influence on tropical weather in the Australian region during the wet-season months of October to April.
Kelvin wave (KW)
Equatorial Kelvin waves are alternating low and high pressure centres along the equator that move from west to east. For consistency with the theoretical structure of Kelvin waves, convection (leading to cloudiness and rainfall) near the equator should be on the western side of the low pressure regions. In contrast, clear conditions should be found on the eastern side of the low pressure. Like other atmospheric tropical waves, alternating zones of cloudiness and clear weather can be seen on satellite imagery in association with an active Kelvin wave. The waves move in the same direction as the Madden–Julian Oscillation, from west to east, but typically 2 to 3 times faster.
Equatorial Rossby (ER) wave
In theory there are several different equatorial Rossby waves. The most commonly seen atmospheric ER wave, and the one we discuss here, has high and low pressure regions centred at latitudes about 10 degrees north and south of the equator. To be consistent with theory, the lows and highs should form a symmetric pattern about the equator. Due to the wind flow around these high and low pressure regions, some regions along the equatorial zone favour cloud and rain formation, while other regions favour stable, clear conditions. On satellite imagery equatorial Rossby waves can often be identified due to the presence of cloud systems at similar longitudes on both sides of the equator. These cloud systems, in conjunction with the off-equatorial low pressure, can be the precursors to tropical cyclones on either side of the equator. While equatorial Rossby waves move at a speed close to that of a typical Madden–Julian Oscillation pulse, they move in the opposite direction—from east to west.
Mixed Rossby-Gravity (MRG) wave
Like equatorial Rossby waves, mixed Rossby-Gravity waves also move towards the west, but MRG waves have their pressure centres arranged anti-symmetrically on either side of the equator. This means a low pressure centre on one side of the equator will be opposite a high pressure centre in the other hemisphere. Satellite analysis of mixed Rossby-Gravity waves shows favoured zones for deep convection, often with thunderstorm clusters, in an antisymmetric arrangement about the equator. Their speed of movement to the west is faster than that of an ER wave.
Images are from The COMET® Program, from Introduction to Tropical Meteorology.
The COMET® Website is at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through cooperative agreement(s) with the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC). © 1997–2021 University Corporation for Atmospheric Research. All Rights Reserved.
MJO location and strength
These graphs show the strength and progression of the MJO through 8 different areas along the equator around the globe.
Area 3 is north west of Australia, 4 and 5 are to the north (the Maritime Continent), and 6 is to the north east.
RMM1 and RMM2 are mathematical methods that combine cloud amount and winds at upper and lower levels of the atmosphere to provide a measure of the strength and location of the MJO. When this index is within the centre circle the MJO is considered weak. Outside of this circle the index is stronger and will usually move in an anti-clockwise direction as the MJO moves from west to east.
Download data: RMM Data
*Note: There are missing satellite observations from 16/3/1978 to 31/12/1978.
Methodology: Until the end of 2013 we use the exact method of Wheeler and Hendon (2004, https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2) and from 2014 we use the modified method of Gottschalck et al. (2010, https://doi.org/10.1175/2010BAMS2816.1).
Average weekly rainfall probabilities
These maps show average weekly rainfall probabilities for each of the 8 MJO phases. Green shades indicate higher than normal expected rainfall, while brown shades indicates lower than normal expected rainfall.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season.
Read more: The Combined Influence of the Madden–Julian Oscillation and El Niño–Southern Oscillation on Australian Rainfall.
These maps show average minimum or maximum temperature anomalies for each of the 8 MJO phases. Red-yellow colours indicate higher than normal temperature, while blue colours indicate lower than normal temperature.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season.
Outgoing longwave radiation (OLR) is often used as a way to identify tall, thick, convective rain clouds. These maps show the difference from expected cloudiness based on the position of the MJO. The violet and blue shading indicates higher than normal, active or enhanced tropical weather, while orange shading indicates lower than normal cloud or suppressed conditions.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season
These maps show the atmospheric troughs and ridges (in blue and red, respectively) associated with the different phases of the MJO at the 500hPa level. The 500 hPa level is approximately 5500 m above sea level and is about the middle of the troposphere. Colour shading is only used where the geopotential height anomalies are determined to be statistically-significant at the 5% level.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season
Global maps of outgoing longwave radiation (OLR)
Global maps of outgoing longwave radiation (OLR) highlight regions experiencing more or less cloudiness. The top panel is the total OLR in Watts per square metre (W/m²) and the bottom panel is the anomaly (current minus the 1979-1998 climate average), in W/m². In the bottom panel, negative values (blue shading) represent above normal cloudiness while positive values (brown shading) represent below normal cloudiness.
OLR totals over the dateline
Regional maps of outgoing longwave radiation (OLR)
The graphs linked to this map show the OLRs for the different regions within the Darwin RSMC area. The horizontal dashed line represents what is normal for that time of year (based on the 1979 to 1998 period). The coloured curve is the 3-day moving average OLR in W/m². Below normal OLR indicates cloudier than normal conditions in this particular area, and is shown in blue shading. Above normal OLR indicates less cloudy conditions and is shown in yellow shading.
Time longitude plots
Time longitude plots of daily averaged OLR anomalies (left) and 850 hPa (approximately 1.5 km above sea level) westerly wind anomalies (right) are useful for indicating the movement of the MJO.
How to read the Time longitude plots
The vertical axis represents time with the most distant past on the top and becoming more recent as you move down the chart. The Horizontal axis represents longitude.
Eastward movement of a strong MJO event would be seen as a diagonal line of violet (downward from left to right) in the OLR diagram, and a corresponding diagonal line of purple in the wind diagram. These diagonal lines would most likely fall between 60°E and 150°E and they would be repeated nearly every 1 to 2 months.
Daily averaged OLR anomalies
Westerly wind anomalies
Australian region
Recent conditions
For the week ending 3 November, scattered thunderstorms developed across northern parts of the country, some severe. This activity extended south and became more widespread through inland parts of Western Australia, Queensland and the Northern Territory towards of the end of the week, as a series of low-pressure troughs moved across parts of the Australian interior. An outbreak of severe thunderstorms developed about the east coast of Australia, with giant hailstones, damaging winds and intense rainfall observed. Weekly rainfall totals of 25 to 50mm, locally higher, were recorded across much of the Northern Territory and Queensland, as well as in northern parts of Western Australia.
During the week, low intensity to severe heatwave conditions built up and persisted across northern parts of Western Australia, Queensland and the Northern Territory.
Maximum and minimum temperatures were above average across much of northern Australia. Daily maximum and minimum temperature anomalies were up to 6°C above average across large inland parts of the tropics, with some localised areas up to 8°C above average. Some Queensland stations had their warmest October daily maximum temperatures on record.
Fortnightly forecast
The forecast for the fortnight of 8 to 21 November, issued on 3 November, shows rainfall is likely to be above average for most of Queensland and eastern parts of the Northern Territory, with the highest chance about northeast Queensland, the eastern Top End and Gulf country. Forecasts for northern parts of Western Australia show a tendency towards below average rainfall.
Maximum and minimum temperatures are likely to be above average about coastal areas of Northern Australia and inland through the Kimberley, but below average in areas further south. Nights have an increased chance (more than 70% chance) of being unusually warm through the Top End of the Northern Territory, Cape York Peninsula and the Queensland east coast. Unusually warm temperatures are considered to be those in the warmest 20% of records for this period between 1981 and 2018.
Madden-Jullian Oscillation
The Madden-Julian Oscillation (MJO) is currently, as of 1 November, at moderate strength in the western Pacific Ocean. Most forecasts from surveyed models suggest the MJO is likely to become weak or indiscernible over the coming fortnight.
International conditions
Hurricane Melissa
Hurricane Melissa was an extremely destructive hurricane the developed in the Caribbean Sea and affected Haiti, the Dominican Republic, Jamaica, Cuba and the Bahamas. As of 4 November, Hurricane Melissa was the strongest tropical cyclone worldwide in 2025, reaching Category 5 intensity with maximum sustained winds of around 295 km/h, before making landfall near New Hope in eastern Jamaica on 28 October. Melissa was the strongest hurricane to directly hit Jamaica since records began in 1851.
As of 2 November, at least 67 deaths in the region have been reported. Hurricane Melissa caused extensive structural damage, power outages, major flooding and landslides in many of the Caribbean islands, especially near its landfall locations in western Jamaica and eastern Cuba. A long period of recovery and reconstruction will be required in many island communities impacted by Hurricane Melissa.
Heavy Rainfall and flooding in central Vietnam
Heavy rainfall affected central Vietnam on 22 and 28 October, causing significant flooding in the historic city of Hue, Da Nang and surrounding areas. During this period, the remnants of Severe Tropical Storm Fengshen combined with strong onshore easterly winds to produce continuous heavy rainfall in the coastal mountains of central Vietnam. A rainfall total of 1739 mm was recorded at Bach Ma Peak in the 24 hours between 7pm 26 October and 7pm 27 October, which was close to the global record for 24-hour rainfall totals (1825 mm at Foc Foc on La Reunion Island). At least 37 deaths have been reported and over 100,000 homes were flooded with major agricultural losses in the affected areas.
Typhoon Kalmaegi (Tino)
Tropical Storm Kalmaegi developed in the western north Pacific Ocean to the west of the Philippines on 1 November. Kalmaegi intensified to typhoon strength (Aust. Category 3 equivalent) on 3 November and passed over the southern Philippines on 4 November with maximum sustained winds of 140 km/h and wind gusts up to 195 km/h. The typhoon was forecast to produce severe wind impacts, coastal storm surge, heavy rainfall, flash floods and landslides in central provinces. Typhoon Kalmaegi is forecast to move away from the Philippines and approach the flood affected parts of central Vietnam on 7 November. The storm has also been named 'Tino' by the Philippines Meteorological Agency, PAGASA.
Severe Cyclonic Storm Montha
Severe Cyclonic Storm Montha (Aust. Category 2 equivalent) developed from a low-pressure area over the Bay of Bengal around 24 October 2025. It evolved into a deep depression by 26 October and was classified as a Severe Cyclonic Storm (category 2 cyclone) by 28 October. The cyclone made landfall on the Andhra Pradesh coast of eastern India late on 28 October. It brought torrential rainfall (exceeding 200 mm in some areas) and flooding, especially in Andhra Pradesh and Telangana. Sustained winds of 90–110 km/h, with stronger gusts caused damage to infrastructure and vegetation.
Product code: IDCKGEW000
ACKNOWLEDGEMENT: Interpolated OLR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
Product Code: IDCKGEM000
