Tropical monitoring and outlooks
Madden-Julian Oscillation (MJO)
Inviting your feedback on our climate information
We are running a short survey to understand how you use the climate information pages on our website. Your feedback will help us improve services and shape future products that better support your needs. Please use our Feedback Form to participate.
The Madden-Julian Oscillation (MJO) is the major fluctuation in tropical weather on weekly to monthly timescales. The MJO can be characterised as an eastward moving 'pulse' of cloud and rainfall near the equator that typically recurs every 30 to 60 days.
Forecast MJO location and strength
The chart shows the strength and progression of the MJO through 8 different areas along the equator around the globe.
Area 3 is north west of Australia, 4 and 5 are to the north (the Maritime Continent), and 6 is to the north east.
RMM1 and RMM2 are mathematical methods that combine cloud amount and winds at upper and lower levels of the atmosphere to provide a measure of the strength and location of the MJO. When this index is within the centre circle the MJO is considered weak. Outside of this circle the index is stronger and will usually move in an anti-clockwise direction as the MJO moves from west to east.
Tropical atmospheric waves
About tropical atmospheric waves
MJO
The Madden–Julian Oscillation (MJO) is the major fluctuation in tropical weather on weekly to monthly timescales. It can be characterised as an eastward moving pulse or wave of cloud and rainfall near the equator that typically recurs every 30 to 60 days.
Other tropical waves in the atmosphere
In addition to the MJO, other large-scale atmospheric waves also occur in the tropics. The main ones are the convectively-coupled Kelvin wave (KW), equatorial Rossby wave (ER), and mixed Rossby-Gravity wave (MRG). They can provide further insight into the current tropical weather, such as the location and development of tropical cyclones, and what may occur over the coming days to weeks. These waves occur year-round, but typically have a greater influence on tropical weather in the Australian region during the wet-season months of October to April.
Kelvin wave (KW)
Equatorial Kelvin waves are alternating low and high pressure centres along the equator that move from west to east. For consistency with the theoretical structure of Kelvin waves, convection (leading to cloudiness and rainfall) near the equator should be on the western side of the low pressure regions. In contrast, clear conditions should be found on the eastern side of the low pressure. Like other atmospheric tropical waves, alternating zones of cloudiness and clear weather can be seen on satellite imagery in association with an active Kelvin wave. The waves move in the same direction as the Madden–Julian Oscillation, from west to east, but typically 2 to 3 times faster.
Equatorial Rossby (ER) wave
In theory there are several different equatorial Rossby waves. The most commonly seen atmospheric ER wave, and the one we discuss here, has high and low pressure regions centred at latitudes about 10 degrees north and south of the equator. To be consistent with theory, the lows and highs should form a symmetric pattern about the equator. Due to the wind flow around these high and low pressure regions, some regions along the equatorial zone favour cloud and rain formation, while other regions favour stable, clear conditions. On satellite imagery equatorial Rossby waves can often be identified due to the presence of cloud systems at similar longitudes on both sides of the equator. These cloud systems, in conjunction with the off-equatorial low pressure, can be the precursors to tropical cyclones on either side of the equator. While equatorial Rossby waves move at a speed close to that of a typical Madden–Julian Oscillation pulse, they move in the opposite direction—from east to west.
Mixed Rossby-Gravity (MRG) wave
Like equatorial Rossby waves, mixed Rossby-Gravity waves also move towards the west, but MRG waves have their pressure centres arranged anti-symmetrically on either side of the equator. This means a low pressure centre on one side of the equator will be opposite a high pressure centre in the other hemisphere. Satellite analysis of mixed Rossby-Gravity waves shows favoured zones for deep convection, often with thunderstorm clusters, in an antisymmetric arrangement about the equator. Their speed of movement to the west is faster than that of an ER wave.
Images are from The COMET® Program, from Introduction to Tropical Meteorology.
The COMET® Website is at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through cooperative agreement(s) with the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC). © 1997–2021 University Corporation for Atmospheric Research. All Rights Reserved.
MJO location and strength
These graphs show the strength and progression of the MJO through 8 different areas along the equator around the globe.
Area 3 is north west of Australia, 4 and 5 are to the north (the Maritime Continent), and 6 is to the north east.
RMM1 and RMM2 are mathematical methods that combine cloud amount and winds at upper and lower levels of the atmosphere to provide a measure of the strength and location of the MJO. When this index is within the centre circle the MJO is considered weak. Outside of this circle the index is stronger and will usually move in an anti-clockwise direction as the MJO moves from west to east.
Download data: RMM Data
*Note: There are missing satellite observations from 16/3/1978 to 31/12/1978.
Methodology: Until the end of 2013 we use the exact method of Wheeler and Hendon (2004, https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2) and from 2014 we use the modified method of Gottschalck et al. (2010, https://doi.org/10.1175/2010BAMS2816.1).
Average weekly rainfall probabilities
These maps show average weekly rainfall probabilities for each of the 8 MJO phases. Green shades indicate higher than normal expected rainfall, while brown shades indicates lower than normal expected rainfall.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season.
Read more: The Combined Influence of the Madden–Julian Oscillation and El Niño–Southern Oscillation on Australian Rainfall.
These maps show average minimum or maximum temperature anomalies for each of the 8 MJO phases. Red-yellow colours indicate higher than normal temperature, while blue colours indicate lower than normal temperature.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season.
Outgoing longwave radiation (OLR) is often used as a way to identify tall, thick, convective rain clouds. These maps show the difference from expected cloudiness based on the position of the MJO. The violet and blue shading indicates higher than normal, active or enhanced tropical weather, while orange shading indicates lower than normal cloud or suppressed conditions.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season
These maps show the atmospheric troughs and ridges (in blue and red, respectively) associated with the different phases of the MJO at the 500hPa level. The 500 hPa level is approximately 5500 m above sea level and is about the middle of the troposphere. Colour shading is only used where the geopotential height anomalies are determined to be statistically-significant at the 5% level.
Select the 'Wind' checkbox to also show the expected 850 hPa (approximately 1.5 km above sea level) wind anomalies. The direction and length of the arrows indicate the direction and strength of the wind anomaly. The darker the arrow, the more reliable the information is.
The relationship of the MJO with global weather patterns changes with the season
Global maps of outgoing longwave radiation (OLR)
Global maps of outgoing longwave radiation (OLR) highlight regions experiencing more or less cloudiness. The top panel is the total OLR in Watts per square metre (W/m²) and the bottom panel is the anomaly (current minus the 1979-1998 climate average), in W/m². In the bottom panel, negative values (blue shading) represent above normal cloudiness while positive values (brown shading) represent below normal cloudiness.
OLR totals over the dateline
Regional maps of outgoing longwave radiation (OLR)
The graphs linked to this map show the OLRs for the different regions within the Darwin RSMC area. The horizontal dashed line represents what is normal for that time of year (based on the 1979 to 1998 period). The coloured curve is the 3-day moving average OLR in W/m². Below normal OLR indicates cloudier than normal conditions in this particular area, and is shown in blue shading. Above normal OLR indicates less cloudy conditions and is shown in yellow shading.
Time longitude plots
Time longitude plots of daily averaged OLR anomalies (left) and 850 hPa (approximately 1.5 km above sea level) westerly wind anomalies (right) are useful for indicating the movement of the MJO.
How to read the Time longitude plots
The vertical axis represents time with the most distant past on the top and becoming more recent as you move down the chart. The Horizontal axis represents longitude.
Eastward movement of a strong MJO event would be seen as a diagonal line of violet (downward from left to right) in the OLR diagram, and a corresponding diagonal line of purple in the wind diagram. These diagonal lines would most likely fall between 60°E and 150°E and they would be repeated nearly every 1 to 2 months.
Daily averaged OLR anomalies
Westerly wind anomalies
Australian region
Recent conditions
For the week ending 1 December, widespread tropical moisture generated high rainfall totals across much of northern Australia. Inland troughs over northern Queensland generated rainfall totals in excess of 150 mm. Mostly lower totals were observed across the Northern Territory, but widespread falls of 20–100 mm were observed from southern regions to the Top End of the Territory. The highest falls were in the northern Kimberley region of Western Australia. Due to Severe Tropical Cyclone Fina's landfall, Wyndham Aero saw a weekly rainfall total of 222.8 mm. Widespread weekly rainfall totals of 15 to 50 mm, and locally exceeding 150 mm, were observed across the Kimberley region. Several sites in the Kimberley had their highest November daily rainfall on record, including Wyndham Aero with 147.2 mm to 9am on 26 November.
High humidity and temperatures produced heatwave conditions across parts of the north, particularly for eastern Queensland where some coastal stations had their record high minimum temperature for November on the 29th and 30th.
Severe Tropical Cyclone Fina
After impacting the western Top End of the Northern Territory last week, Severe Tropical Cyclone Fina tracked over the Joseph Bonaparte Gulf in a south-westerly direction towards the northern Kimberley coast. It briefly strengthened to a Category 4 system prior to making landfall near Berkeley River mouth at 9:30 pm AWST on 24 November as a Category 3 system. Despite making landfall on an isolated and sparsely populated coastline, Fina caused significant damage to the Berkeley River Lodge. The 2 caretaker staff at the Lodge took shelter and avoided injury.
Madden–Julian Oscillation
The Madden–Julian Oscillation (MJO) is currently strong, located over the tropical central Pacific region. Forecasts from ACCESS-S and other international models suggest the MJO will rapidly weaken in the coming days as it moves into the tropical Americas, with several models indicating it will become indiscernible. Other models indicate a weak signal slowly tracking through the tropical Americas into mid-December.
At this time of year, the MJO in the central Pacific typically enhances rainfall across parts of north-eastern Australia. An MJO pulse in the tropical Americas is typically associated with below-average rainfall for much of northern and southern Australia.
Australian monsoon update
Recent conditions across the tropical regions north of Australia suggest the onset of the Australian monsoon is still some time off, with wind patterns closer to patterns typically seen in October or November than December. The MJO is also forecast to remain well away from the Maritime Continent. the region north of Australia, in the coming weeks.
Based on current forecasts and typical MJO patterns, conditions are not expected to become favourable for monsoon onset until at least early January 2026. The average date of monsoon onset at Darwin is around 28 December, so the current state of the tropics suggests a later than average onset date.
The long-range forecast for 6 to 19 December, issued on 1 December, indicates that below average rainfall is likely to very likely (60% to over 80% chance) for most of Australia, consistent with the MJO outlook.
The strong MJO over the Pacific may also prevent any further development of the active La Niña event.
International conditions
Tropical activity
The current and forecast location of the MJO suggests low tropical storm and cyclone activity for the Indian Ocean and western North Pacific in the coming fortnight.
Northern hemisphere monsoon systems remain especially active in some regions, highlighting the anomalous wind patterns currently affecting the earth's tropical regions. Asian countries including Sri Lanka, Indonesia, Thailand, Malaysia and Vietnam suffered catastrophic flooding due to intense rainfall, leading to at least 1,000 reported deaths by 1 December. The exceptional nature of the event was at least in part due to a rare near-equatorial system (Cyclonic Storm Senyar) which formed just north of the equator in the Malacca Stait and tracked westwards over Sumatra and the Malay Peninsula. Further west, Cyclonic Storm Ditwah formed to the south of Sri Lanka, before crossing Sri Lanka's coastline prior to tracking north and dissipating over the Bay of Bengal.
Monsoon activity over the western North Pacific contributed to the development of Typhoon Koto (Verbena), which caused flooding and landslides across parts of the Philippines and Vietnam.
Product code: IDCKGEW000
ACKNOWLEDGEMENT: Interpolated OLR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
Product Code: IDCKGEM000
