National Seasonal Temperature Outlook: probabilities for July to September 2012, issued 20th June 2012
The national outlook for temperatures during July to September indicates that:
The pattern of seasonal temperature odds across Australia has been produced using recent Pacific and Indian Ocean temperature patterns. The outlook is a result of warmer than normal waters in the eastern Indian Ocean with some influence from neutral conditions in the central Pacific Ocean.
The chances that the average maximum temperature for the July to September period will exceed the long-term median maximum temperature are above 60% across WA, SA, most of Victoria, NSW, the southern half of Queensland and the southern two-thirds of the NT. Odds exceed 80% across western WA (see map above). This means that for every ten years with ocean patterns similar to those currently observed, days during July to September would be expected to be warmer than average in about six to eight years over these areas, with only two or four years being cooler than average.
Outlook confidence is related to how consistently the Pacific and Indian Oceans affect Australian temperatures. History shows the oceans' effect on maximum temperatures during the July through to September period to be moderately consistent over most of WA, SA, the NT, southern Queensland and northeast NSW. Elsewhere the effect is weak to very weak (see background information).
The odds that the average July to September minimum temperature will exceed the long-term median minimum temperature are 60 to 70% over the southern half of WA (see map above). In contrast, the chances of receiving above normal minimum temperatures are between 35 and 40% over eastern parts of Queensland. In other words, the chances of below normal minimum temperatures are between 60 and 65% in this region.
Over the rest of the country, the chances of nights being warmer than average are similar to the chances of nights being cooler.
History shows the oceans' effect on minimum temperatures during the July to September period to be moderately consistent over the Top End of the NT, Queensland, southeast NSW and the southern half of WA. Elsewhere the effect is only weakly or very weakly consistent.
Click on the maps above for larger versions of the maps. Use the reload/refresh button to ensure the latest forecast maps are displayed.
The following climate meteorologists in the National Climate Centre can be contacted about this outlook: Robyn Duell on (03) 9669 4671, Andrew Watkins on 0439 381 010, Catherine Ganter on (03) 9669 4679.
Regional versions of this media release are available: | Northern Aust | Southeastern Aust | WA |
Regional commentary is available from the Climate Services Sections in the Bureau's Regional Offices:
Queensland - | (07) 3239 8660 |
New South Wales - | (02) 9296 1555 |
Victoria - | (03) 9669 4949 |
Tasmania - | (03) 6221 2043 |
South Australia - | (08) 8366 2664 |
Western Australia - | (08) 9263 2222 |
The Northern Territory - | (08) 8920 3813 |
THE NEXT ISSUE OF THE SEASONAL OUTLOOK IS EXPECTED BY 18th July 2012
Corresponding rainfall outlook
Maximum temperature departures from average for March to May 2012 - base period 1961-1990
Minimum temperature departures from average for March to May 2012 - base period 1961-1990
The Bureau's seasonal outlooks are general statements about the probability or risk of wetter or drier than average weather over a three-month period. The outlooks are based on the statistics of chance (the odds) taken from Australian rainfall/temperatures and sea surface temperature records for the tropical Pacific and Indian Oceans. They are not, however, categorical predictions about future rainfall, and they are not about rainfall within individual months of the three-month outlook period. The temperature outlooks are for the average maximum and minimum temperatures for the entire three-month outlook period. Information about whether individual days or weeks may be unusually hot or cold, is unavailable.
This outlook is a summary. More detail is available from the contact people.
Probability outlooks should not be used as if they were categorical forecasts. These outlooks should be used as a tool in risk management and decision making. The benefits accrue from long-term use, say over 10 years. At any given time, the probabilities may seem inaccurate, but taken over several years, the advantages of taking account of the risks should outweigh the disadvantages. For more information on the use of probabilities, farmers could contact their local departments of agriculture or primary industry.
Model Consistency and Outlook Confidence: Strong consistency means that tests of the model on historical data show a high correlation between the most likely outlook category (above/below median) and the verifying observation (above/below median). In this situation relatively high confidence can be placed in the outlook probabilities. Low consistency means the historical relationship, and therefore outlook confidence, is weak. In the places and seasons where the outlooks are most skilful, the category of the eventual outcome (above or below median) is consistent with the category favoured in the outlook about 75% of the time. In the least skilful areas, the outlooks perform no better than random chance or guessing. The rainfall outlooks perform best in eastern and northern Australia between July and January, but are less useful in autumn and in the west of the continent. The skill at predicting seasonal maximum temperature peaks in early winter and drops off marginally during the second half of the year. The lowest point in skill occurs in early autumn. The skill at predicting seasonal minimum temperature peaks in late autumn and again in mid-spring. There are also two distinct periods when the skill is lowest - namely late summer and mid-winter. However, it must always be remembered that the outlooks are statements of chance or risk. For example, if you were told there was a 50:50 chance of a horse winning a race but it ran second, the original assessment of a 50:50 chance could still have been correct.
The Southern Oscillation Index (SOI) is calculated using the barometric pressure difference between Tahiti and Darwin. The SOI is one indicator of the stage of El Niño or La Niña events in the tropical Pacific Ocean. It is best considered in conjunction with sea-surface temperatures, which form the basis of the outlooks. A moderate to strongly negative SOI (persistently below −10) is usually characteristic of El Niño, which is often associated with below average rainfall over eastern Australia, and a weaker than normal monsoon in the north. A moderate to strongly positive SOI (persistently above +10) is usually characteristic of La Niña, which is often associated with above average rainfall over parts of tropical and eastern Australia, and an earlier than normal start to the northern monsoon season. The Australian impacts of past El Niño events since 1900 are summarized on the Bureau's web site (El Niño - Detailed Australian Analysis), and past La Niña events (La Niña - Detailed Australian Analysis)
© Australian Government, Bureau of Meteorology